Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[761] Tibixe2009-01-30 16:26:18

Az analízissel szenvedjenek csak a fizikusok, az esetszétbontogatással meg a hentesek... Gyönyörűen kijön számelmélettel.

Vegyük mindkét oldal p alapú logaritmusát.

qp=(logp q)  pq

Tehát logpq racionális, t/s alakban felírható, ahol t és s relatív prím egészek.

Innen

sqp=tpq

Ekkor lesz egy u pozitív egész szám, amire

p=ut    q=us

Visszahelyettesítve:

t  usut=s  utus

Az általánosság megszorítása nélkül feltehetjük, hogy

sut\gets

. Az előző egyenlet mindkét oldalát osztva:

t=s  utus-sut

Az előző feltétel miatt utus-sut egész. Mivel t és s pozitív relatív prím egészek, utus-sut csak 1 lehet. Tehát t=s. Az egyetlen önmagával rel. prím pozitív egész pedig az 1. Innen pedig

p=u1=q

[760] nadorp2009-01-30 08:09:03

Ha p=1 akkor q=1 és fordítva, tehát ezekben az esetekben igaz az állítás. Feltehető, hogy p,q\geq2. Tegyük fel, hogy p<q. Ekkor a feladatban szereplő egyenlőség úgy állhat fenn, ha p kitevője nagyobb, azaz

qp>pq

\frac{\ln q}q>\frac{\ln p}p

Mivel az f(x)=\frac{\ln x}x függvény x\geqe esetén szigorúan monoton csökken, ezért 3\leqp<q esetén a fenti egyenlőtlenség nem állhat fenn. Marad a p=2 eset. Ekkor

\frac{\ln4}4=\frac{\ln2}2<\frac{\ln q}q miatt szintén a monoton csökkenésből adódóan q<4,tehát csak q=3 lehet. Viszont a p=2 q=3 értékek esetén nem teljesül az eredeti egyenlőség. Azt kaptuk, p<q nem lehet. Teljesen hasonlóan adódik, hogy p>q sem lehetséges, tehát p=q

Előzmény: [759] Kiss Béla, 2009-01-29 20:53:36
[759] Kiss Béla2009-01-29 20:53:36

Sziasztok! Sagítséget szeretnék kérni a következő feladathoz. Foggalmam sincs, hogy hogyan lehetne megoldani:

Bizonyítsuk be, hogyha a p és q pozitív egész számokra fenn áll a pqp=qpq, akkor p=q.

[757] BohnerGéza2009-01-24 16:31:35

Ábra egy kis segítséggel. A párhuzamos helyzet esetén látszik HoA állítása.

Előzmény: [755] HoA, 2009-01-22 18:47:09
[756] Gyöngyő2009-01-24 10:26:40

Sziasztok!

Lenne egy kérdésem!

Tudjuk,hogy \lim_{n \rightarrow \infty}\frac{a_1+a_2+...+a_n}{n}=a

bizonyítsuk be,hogy

\lim_{n \rightarrow \infty}\frac{a^2_1+a^2_2+...+a^2_n}{n^2}=0

ahol ai pozitív valós számok.

Üdv.: Gyöngyő

[755] HoA2009-01-22 18:47:09

Ott viszont nem reagált rá senki. Idemásolom, hogy ne kelljen lapozgatni:

Az ABCD konvex négyszögben AD=2. Az ABD szög és az ACD szög derékszög. Az ABD háromszög szögfelezőinek metszéspontja gyök(2) távolságra van az ACD háromszög szögfelezőinek a metszéspontjától. Mekkora a BC oldal hossza?

Az ugye világos, hogy az adatok nem egyértelműen határozzák meg ABCD négyszöget. Kérdés, hogy BC hossza egyértelmű-e. Szimmetrikus esetben ABCD egyenlőszárú trapéz és elég könnyen kiszámolható, hogy ha O_1 O_2 = \sqrt{2} , akkor BC = \sqrt{3}

Feladatok:

- adjunk geometriai bizonyítást a szimmetrikus esetre

- adjunk bizonyítást az általános esetre

- igaz-e a tétel fordítottja: Ha BC = \sqrt{3} , akkor O_1 O_2 = \sqrt{2} ?

Előzmény: [754] sakkmath, 2009-01-22 10:42:23
[754] sakkmath2009-01-22 10:42:23

Érdekes matekfeladatok [2813], klikk ide.

Előzmény: [753] Valezius, 2009-01-21 20:22:43
[753] Valezius2009-01-21 20:22:43

Láttam valamelyik topikban egy feladatot, de most az istenért se találom, valaki nem tudja, melyikben van?

ABCD konvex négyszög, ABD és ACD derékszög. Ugyanezekbe, mint háromszögbe írt körök középpontjai gyök(2) távolságra vannak.

Csak érdekelne, hogy jól emlékszem-e rá.

[752] j.milan2009-01-17 21:55:07

Közben javítanám saját magam, más irányban kijött a megoldás :) üdv

Előzmény: [751] j.milan, 2009-01-17 21:22:57
[751] j.milan2009-01-17 21:22:57

Jóestét! Az én kérdésem az, hogy mi azon pontok mértani helye a síkon, amelyek három ponttól vett távolságának négyzetösszege állandó.

Előzmény: [750] Gyöngyő, 2009-01-17 16:31:28

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]