Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[827] HoA2009-02-24 14:08:59

Köszönöm Káli gúla szép megoldását. Azt hiszem, segít még jobban rávilágítani arra, mi a bajom ezzel a feladattal. Fussunk tehát neki harmadszor is, ezúttal az ő jelöléseit is használva:

Egy egyenletes v1 sebességgel haladó, M méter hosszú menetoszlop végéről t0 időpontban egy futár szintén egyenletes v2 sebességgel az oszlop legelejére megy. Ott t mp-ig az oszloppal halad, majd az eredeti v2 sebességével az oszlop végére visszamegy. Mire visszaér, a folyamatosan haladó menetoszlop t0 időponttól pont M métert tesz meg. A kérdés, mekkora utat tett meg a futár összesen? ( Számadatok: t = 15 s , M = 1000 m )

A futár megtett útja [822] megoldóképlete szerint így alakul:

s = M \frac{v_2}{v_1} - t(v_2 - v_1)(1)

Mint az várható volt, a megtett út a feladatban szereplő M,t,v1ésv2 mennyiségektől függ. M és t konkrét értéke adott, de v1ésv2 szerepét jótékony homály fedi. Gondolhatnánk, hogy azok is az M és t ismeretében értelmes határok között szabadon megadhatók, csak most éppen nem rendelünk hozzájuk számértéket. De ez nem így van. A feladat túlhatározott, adott M és t mellett már v1ésv2 nem választható meg egymástól függetlenül. Az adatok közötti megkötést éppen [822] feltételi egyenlete adja:

 \frac{M}{v_1} - t = \frac {M}{v_2 - v_1} + \frac {M}{v_2 + v_1} (2)

Ha M,v1ésv2 értéke lenne adott, megtehetnénk, hogy (2) –ből kifejezzük t-t és ezt behelyettesítjük (1) –be. Rövid átalakítások után [824] szép képletét kapjuk:

 s = M \left ( 2 + \frac{v_2 - v_1}{v_2 + v_1}\right )(3)

De az ekkor sem lenne igaz, hogy „akkor is, ha 15 mp-ig megy elöl, és akkor is, ha 100 órát”, hiszen egy adott M,v1ésv2 hármashoz egy konkrét, éppen a (2) egyenletből adódó t érték tartozik.

Nekünk azonban Mést adott. Mit tehetünk, hogy bemenő adatainktől egyértelműen függő eredményt kapjunk? Az egyik megoldás laci777 „izzadási iránya”: (2) –ből v2-re másodfokú egyenletet kapunk. Ennek fizikailag értelmes gyökét választva v2 -nek ezt a kifejezését behelyettesítjük (1) –be és kapunk egy csúnya , de csak M-et,t-tésv1-et tartalmazó kifejezést. A másik megoldás az, hogy elfogadjuk (3) szép képletét megoldásnak, de hozzátesszük, hogy „ahol v1 szabadon választott sebesség a 0<v1<M/t tartományban, v2 pedig a (2) feltételből számított M,t,ésv1 által meghatározott sebesség”. És ekkor persze a (3) képletben szereplő mennyiségekhez éppen a megadott t érték trtozik.

Előzmény: [824] Káli gúla, 2009-02-23 19:14:32
[826] tudniakarok2009-02-24 13:46:11

Sziasztok! Kérlek segítsetek!

Az a problémám, hogyha adott tetszőleges db nemnegatív szám, akkor hogyan tudnám elrendezni őket egy mátrixba úgy hogy a lehető legegyenletesebb elrendezést kapjam.(Arra gondolván, hogy a két legnagyobb szám a "legtávolabb" legyen egymástól, és így tovább...) Van-e erre vmilyen már kidolgozott algoritmus, mert nem nagyon találom a szakirodalmakban!? Van ötletem, de elég egyszerűnek találom ráadásul nagy számításigényű,hátha vki tud jobbat!

Előre is köszi a segítséget!

[825] laci7772009-02-23 23:22:06

Kedves Káli Gúla!

Köszönöm szépen ezt a megoldást is, bár őszintén szólva olyat igyekeztem volna kiizzadni (a jelzett eredménnyel:(), ahol a menetoszlop (a példa adatai szerint 0<v1<240 km/h közt értelmezhető) sebessége az egyedüli független változó, ahogyan valóban is annak a függvénye minden egyéb tényező (a v2 és az egyes szakaszok s és t értékei egyaránt). Még egyszer köszönöm.

Előzmény: [824] Káli gúla, 2009-02-23 19:14:32
[824] Káli gúla2009-02-23 19:14:32

Működik az is. Legyen v2=kv1, a menetoszlop hossza M. Amíg fel- és lefut, addig \frac{M}{(k-1)v_1}+\frac{M}{(k+1)v_1} idő telik el, ez alatt a menet s_0=\frac{1}{k-1}M+\frac{1}{k+1}M, a futár pedig \matrix{ks_0} utat tesz meg. A középső időszakban együtt mennek, ez a feltétel miatt \matrix{M-s_0}, tehát a futár összesen M+(k-1)s_0=
\left(2+\frac{k-1}{k+1}\right)M=
\left(2+\frac{v_2-v_1}{v_2+v_1}\right)M
utat tett meg a feladat adataival (akkor is, ha 15 mp-ig megy elöl, és akkor is, ha 100 órát vagy ha 0 mp-et ment volna).

Előzmény: [823] laci777, 2009-02-23 16:53:01
[823] laci7772009-02-23 16:53:01

Kedves HoA!

Köszönet (ismét) a segítségért. Úgy gondoltam eredetileg, hogy az egyes időintervallumokban megtett utakkal operálok, de boncolás (+eltévedés:() lett sajna belőle...

Még egyszer köszönöm szépen.

Előzmény: [822] HoA, 2009-02-23 10:08:45
[822] HoA2009-02-23 10:08:45

Szerintem a feladatban nem az okozza a gondot, hogy „a megoldáshoz vezető másodfokú egyenlet túl kemény dió” , hanem az, hogy a feladat egy kicsit tisztességtelenül van kitűzve. Az egyik szokásos középiskolai feladattípus szövegében megadnak bizonyos paramétereket és az eredményt ezek függvényében várják. Ha zárójelben megadják a paraméterek numerikus értékét is, akkor ezeket az eredmény képletébe behelyettesítve számszerű eredményt is tudunk adni . Másik fekadattípus az, ahol egy fizikai jelenség kapcsán bizonyos mennyiségek közötti összefüggések keresése, értékhatárok megállapítása a cél. Itt a kettő keveredik, a baj csak az, hogy ez a szövegből nem derül ki egyértelműen. Tisztességesnek valahogy így érezném a feladat kitűzését:

Egy egyenletes v1 sebességgel haladó menetoszlop végéről t0 időpontban egy futár szintén egyenletes v2 sebességgel az oszlop legelejére megy. Ott 15 mp-ig az oszloppal halad, majd az eredeti v2 sebességével az oszlop végére visszamegy. Mire visszaér, a folyamatosan haladó menetoszlop t0 időponttól pont 1 km-t tesz meg. A kérdés, mekkora utat tett meg a futár összesen? Milyen összefüggés áll fenn v1 és v2 között, ha tudjuk, hogy a menetoszlop 1 km hosszú?

Megoldás: A futár teljes menetideje 1000/v1 mp, ebből 15 mp-ig v1, egyébként v2 sebességgel haladt, a megtett út tehát s = 15 v_1 + (1000/v_1 -15) v_2= 1000 \frac{v_2}{v_1} - 15 (v_2 - v_1) méter. A v1ésv2 közötti összefüggést abból állapítjuk meg, hogy a futár 1000/v1-15 mp alatt az 1000 méteres oszlop végéről az elejére majd vissza ment, menetideje tehát: \frac{1000}{v_1} -15 = \frac{1000}{v_2 - v_1} + \frac{1000}{v_2 + v_1} Ezek után a v2-re adódó másodfokú egyenletet elemezhetjük, milyen v1 értékekre kapunk pozitív v2-t, v2 milyen határok között változhat, stb. Végül v2-t v1 függvényeként felírva behelyettesíthetjük a megtett út képletébe, így az egy csak v1 -től függő kifejezés lesz, de továbbra sem egy konkrét számérték.

Előzmény: [815] laci777, 2009-02-22 00:21:36
[821] Lóczi Lajos2009-02-22 18:20:58

Rögzített x\inH-ra n\to\infty esetén fn(x)\tof(x):=\pix/2. A függvénysorozat egyenletes konvergenciája azt jelenti, hogy \lim_{n\to\infty} {\rm{sup}}_{x\in H}|f_n(x)-f(x)|=0. Ezt kell igazolni most. Ehhez egy kis függvényvizsgálatra van szükség.

1. Látszik, hogy ha x rögzített, akkor a konvergencia n-ben monoton: fn(x)<fn+1(x)<f(x), vagyis |fn(x)-f(x)|=f(x)-fn(x)=:gn(x).

2. Pl. L'Hospital-lal belátod, hogy \lim_{x\to\infty}g_n(x)=\frac{1}{n}>0, illetve két deriválással, hogy gn(x) konkáv. De gn(0)=0 is igaz. Vagyis rögzített n-re gn olyan nemnegatív konkáv függvény, amely 0-ban 0, a végtelenben pedig a határértéke pozitív. Egy ilyen függvény viszont minden x\inH esetén kisebb, mint a limesze, tehát 0\le g_n(x)<\frac{1}{n}, minden x-re és n-re.

3. Emiatt \lim_{n\to\infty} {\rm{sup}}_{x\in H} g_n(x)=0.

Előzmény: [819] plac, 2009-02-22 14:22:15
[820] Lóczi Lajos2009-02-22 17:23:04

Viszont igazzá válik az állítás, ha megköveteljük, hogy a két végpontban ugyanazok legyenek a függvényértékek, vagyis f(a)=g(a) és f(b)=g(b) legyen.

Ekkor ugyanis a két konvex alakzat tartalmazni fogja egymást (az egyik alakzat a két végpont, az őket összekötő szakasz és f "lelógó" grafikonja által határolt síkidom; a másik ugyanígy, csak g-vel), és ismert (itt a Fórumon már kétszer is előkerült a bizonyítása, csak meg kell keresd :), hogy ha egy konvex alakzat tartalmaz egy másikat, akkor a külső alakzat kerülete nem lehet kisebb.

Előzmény: [818] M. Feri, 2009-02-22 13:45:13
[819] plac2009-02-22 14:22:15

Hello! A kérdésem a következő lenne. Valaki megtudja nekem mondani, hogy fn(x)=x.arctan(nx), H=(0,\infty) függvénysorozat egyenletesen konvergens-e a konvergencia halmazán és hogy ezt hogyan bizonyítom... Bocsánat ha valaki nagyon bugyutának véli a kérdést, de nagyon nem látom, hogy kellene megcsinálni.

[818] M. Feri2009-02-22 13:45:13

Igen, éreztem én, hogy sántít valami...

Előzmény: [817] Lóczi Lajos, 2009-02-22 13:32:53

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]