Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]  

Szeretnél hozzászólni? Jelentkezz be.
[913] zozi2009-04-08 14:48:03

közben kiderült ,hogy rosszul adtam meg az értéktatományt így helyes (A + B) < (C / 2)

viszont ezzel az értéktartománnyal nem minden esetben oldható meg az egyenlet kérdésem az lenne , hogy meglehet e tudni hogy mely C értékeknél áll fenn az egyenlősé ,és melyeknél nem

Előzmény: [912] Sirpi, 2009-04-08 12:43:00
[912] Sirpi2009-04-08 12:43:00

Egy 8-10 jegyű n számnál még simán megy, hogy \sqrt{n}-ig (ami 4-5 jegyű) végignézed az összes számot, hogy osztható-e valamelyikkel.

Egyébként annyi kimaradt az előbb, hogy természetesen a negatív felbontások (pl. (-12).(-1)) is adnak megoldást a feladatra.

Előzmény: [911] zozi, 2009-04-08 10:43:17
[911] zozi2009-04-08 10:43:17

közben rákérdeztem A is és B is < (C + 1) / 2

a megoldásod egyébként teljesen tuti

de érdekelne , hogy mit lehet tenni 2C felbontása ügyében ha C nagy szám mondjuk 8 10 digites

Előzmény: [910] Sirpi, 2009-04-08 09:19:43
[910] Sirpi2009-04-08 09:19:43

B.(2A+B+1)=2C

2C-t bontsuk fel egy páros és egy páratlan szám szorzatára (ugyanis B és 2A+B+1 paritása eltérő), az egyik lesz a B, a másik 2A+B+1. így B ismeretében már A is meghatározható.

Példa: C=6

Ekkor 2C-t, vagyis 12-t felbontjuk egy páros és egy páratlan szám szorzatára: 12.1, 4.3, 3.4, 1.12.

Innen B=12,A=-6; B=4,A=-1; B=3,A=0; B=1,A=5

Előzmény: [907] zozi, 2009-04-07 21:00:05
[909] zozi2009-04-08 08:15:51

C bármely pozitív egész

A és B egész

Előzmény: [908] rizsesz, 2009-04-07 21:07:07
[908] rizsesz2009-04-07 21:07:07

mert ennek az egyenletnek ennyi információ alapján nincsen egyértelmű megoldása.

mennyi c?

a és b egészek?

Előzmény: [907] zozi, 2009-04-07 21:00:05
[907] zozi2009-04-07 21:00:05

sziasztok

egy ismerősöm megkérdezte , hogy megtudnám e oldani ezt

A*B + B(B + 1) / 2 - c = 0

én azt gondoltam , hogy igen de már három napja ülök rajtra és semmire sem jutottam, bár nem tünik nehéznek, és mostmár nagyon érdekelne , hogy hogyan kell megoldanu.

C -t ismerem A és B -t keresem

[906] jonas2009-04-06 23:34:15

Én másképpen csinálnám, de az bonyolultabb. Szedjük szét három részre az eseteket a szerint, hogy sorban az utolsó golyó milyen színű: piros, fehér, vagy kék. Jelentse p(x,y,z) a lehetséges gyönygysorok számát, amik x piros, y fehér, és z kék golyóból állnak, és ezek közül az utolsó piros; hasonlóan f(x,y,z) a lehetséges fehérre végződő sorrendek száma, és k(x,y,z) a kékre végződőek száma. Ezekre felírhatóak az alábbi rekurziós összefüggések.

p(x+1,y,z)=p(x,y,z)+k(x,y,z)

f(x,y+1,z)=f(x,y,z)+k(x,y,z)

k(x,y,z+1)=p(x,y,z)+f(x,y,z)+k(x,y,z)

Kivéve hogy a fenti egyenlőtlenségek nem igazak a p(1,0,0)=f(0,1,0)=k(0,0,1)=1 esetekre.

A peremfeltételek a következők.

p(0,y,z)=f(x,0,z)=k(x,y,0)=0

A feladatban a p(2,3,4)+f(2,3,4)+k(2,3,4) érték a kérdés. Ehhez egy táblázatba fell kell írni a p,f,k értékeit minden x,y,z értékhármasra. Ez talán kézzel is kiszámolható, ha nagyon sok türelmed van, de nekem nincs, úgyhogy számítógéppel csinálom. Ez jön ki.

\matrix{
z = & 0 & 1 & 2 & 3 & 4 \cr
(p, f, k)(0, 0, z) = & (0, 0, 0)  & (0, 0, 1)  & (0, 0, 1)  & (0, 0, 1)  & (0, 0, 1)  \cr
(p, f, k)(0, 1, z) = & (0, 1, 0)  & (0, 1, 1)  & (0, 1, 2)  & (0, 1, 3)  & (0, 1, 4)  \cr
(p, f, k)(0, 2, z) = & (0, 1, 0)  & (0, 2, 1)  & (0, 3, 3)  & (0, 4, 6)  & (0, 5, 10)  \cr
(p, f, k)(0, 3, z) = & (0, 1, 0)  & (0, 3, 1)  & (0, 6, 4)  & (0, 10, 10)  & (0, 15, 20)  \cr
(p, f, k)(1, 0, z) = & (1, 0, 0)  & (1, 0, 1)  & (1, 0, 2)  & (1, 0, 3)  & (1, 0, 4)  \cr
(p, f, k)(1, 1, z) = & (0, 0, 0)  & (1, 1, 0)  & (2, 2, 2)  & (3, 3, 6)  & (4, 4, 12)  \cr
(p, f, k)(1, 2, z) = & (0, 0, 0)  & (1, 1, 0)  & (3, 4, 2)  & (6, 9, 9)  & (10, 16, 24)  \cr
(p, f, k)(1, 3, z) = & (0, 0, 0)  & (1, 1, 0)  & (4, 6, 2)  & (10, 18, 12)  & (20, 40, 40)  \cr
(p, f, k)(2, 0, z) = & (1, 0, 0)  & (2, 0, 1)  & (3, 0, 3)  & (4, 0, 6)  & (5, 0, 10)  \cr
(p, f, k)(2, 1, z) = & (0, 0, 0)  & (1, 1, 0)  & (4, 3, 2)  & (9, 6, 9)  & (16, 10, 24)  \cr
(p, f, k)(2, 2, z) = & (0, 0, 0)  & (1, 1, 0)  & (5, 5, 2)  & (15, 15, 12)  & (34, 34, 42)  \cr
(p, f, k)(2, 3, z) = & (0, 0, 0)  & (1, 1, 0)  & (6, 7, 2)  & (22, 27, 15)  & (60, 76, 64)  \cr
}

Így aztán az eredmény 60+76+64=200.

Persze számítógéppel egyszerűbb, ha végigpróbálod a 9 golyó mind az 1260 sorrendjét, amiből rögtön látszik, hogy 200 jó.

Előzmény: [902] Sirpi, 2009-04-06 13:17:34
[905] Alma2009-04-06 23:00:29

Nincs hiba a gondolatmenetedben. A két megoldás ekvivalens, mindkettő helyes elviekben (számítsd ki a hányadosokat, egyezést fogsz kapni, ugyanis a 20! kiesik a két nevezőből)

Előzmény: [904] Valvehead, 2009-04-06 21:04:17
[904] Valvehead2009-04-06 21:04:17

Egy gép 1400 alkatrészt gyárt egy műszakban, amelyből 50 selejt. Véletlenszerűen kiveszünk egy 20 elemű mintát. Mennyi a valószínűsége, hogy a mintánkban nem lesz egyetlen selejt sem?

A hivatalos megoldás - kedvező eset: 1350.1349.....1331 - összes eset: 1400.1399.....1381

Nem értem, hogy miért veszi figyelembe a sorrendet (ism. nélküli variáció képlete), én azt gondoltam, h. pl. belemarkolok és sorrendtől függetlenül kiveszek egyszerre 20 alkatrészt...

Megoldásom: - kedvező: \binom{1350}{20} - összes eset: \binom{1400}{20}

Nagyon hálás lennék, ha vki. elmagyarázná, hogy hol a hiba a gondolatmenetemben.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]    [94]    [95]    [96]    [97]    [98]    [99]    [100]    [101]    [102]    [103]    [104]    [105]    [106]    [107]    [108]    [109]    [110]    [111]    [112]    [113]    [114]    [115]    [116]    [117]    [118]    [119]    [120]    [121]    [122]    [123]    [124]    [125]    [126]    [127]    [128]    [129]    [130]    [131]    [132]    [133]    [134]    [135]    [136]    [137]    [138]    [139]    [140]    [141]    [142]    [143]    [144]    [145]    [146]    [147]    [148]    [149]    [150]    [151]    [152]    [153]    [154]    [155]    [156]    [157]    [158]    [159]    [160]    [161]    [162]    [163]    [164]    [165]    [166]    [167]    [168]    [169]    [170]    [171]    [172]    [173]    [174]    [175]    [176]    [177]    [178]    [179]    [180]    [181]    [182]    [183]    [184]    [185]    [186]    [187]    [188]    [189]    [190]    [191]    [192]    [193]    [194]    [195]    [196]    [197]    [198]    [199]    [200]    [201]    [202]    [203]    [204]    [205]    [206]    [207]    [208]    [209]    [210]    [211]    [212]    [213]    [214]    [215]    [216]    [217]    [218]    [219]    [220]    [221]    [222]    [223]    [224]    [225]    [226]    [227]    [228]    [229]    [230]