|
[1107] HoA | 2010-04-07 08:53:11 |
A Geometria [1404] –ben kitűzött feladat szerepel Reiman István „Geometria és határterületei” és „Fejezetek az elemi geometriából” könyveiben. A megoldás ötlete az, hogy a komplex síkon az n-ik egységgyököket feleltessük meg a szabályos n-szög csúcsainak. Ezek az ei egységgyökök a zn=1 egyenlet megoldásai, a P=zn-1=0 polinom nullhelyei, ahol e0=1. Ezért a polinom felírható P=(z–1)(z–e1)...(z–en-1) alakban. Ugyanakkor zn-1=(z–1)(zn-1+zn-2+...+z+1) Mindkét kifejezést z-1 tényezővel osztva az adódó kifejezések z=1 helyen vett abszolútértékére adódik, hogy |(1–e1)|.|(1–e2)|...|(1–en-1)|=1+1+..+1=n és itt a baloldal éppen a z=1 csúcsból a többi csúcsba húzott átlók hosszának szorzata.
A kérdés: „Középiskolában tanultuk”, hogy egy ilyen z-1 -gyel történő egyszerűsítés után a továbbiakban ki kell kötnünk, hogy z1 . Itt pedig a folytatásban éppen a z=1 helyen nézzük a dolgokat. Nem hiányzik itt valami?
|
|
|
|
|
|
[1102] K Robi | 2010-04-03 19:41:56 |
természetes szám.
Meg tudná valaki mutatni a bizonyítását? Természetesen egy link is tökéletesen megfelelő olyan helyre, ahol megtalálom (lehetőleg magyar vagy angol vagy német nyelven).
|
|
[1101] Maga Péter | 2010-03-29 08:52:14 |
A bizonyítás ,,helyből'' valóban nem könnyű. Van azonban egy valós függvénytani elmélet, aminek ez az egyik első alkalmazása. Lényegében azt lehet bebizonyítani, hogy egy valós-valós függvény folytonossági pontjainak halmaza előáll megszámlálható sok nyílt halmaz metszeteként (ez egyszerű következménye a folytonosság definíciójának); a racionális számok halmaza pedig nem (ez pedig következik Baire kategóriatételéből).
|
Előzmény: [1100] jonas, 2010-03-28 13:30:57 |
|
|
[1099] Hölder | 2010-03-28 13:18:20 |
Sziasztok! Arra lennék kiváncsi, hogy van -e olyan függvény, ami bármely valós szám esetén értelmezve van és a racionális pontokban folytonos, az irracionális pontokban pedig nem az?(pont a Riemann -féle függvénynek az "ellentettje")
|
|
|
[1097] bily71 | 2010-03-27 21:34:26 |
Üdv! Lenne egy kérdésem.
A törtek egészrészével fáradtságos munka a számolás, de azért vannak szabályok, amelyek megkönnyíthetik a dolgunkat, mint pl.: , vagy pl.: , ha ax<a+1, ahol ab (mod p), stb., (xR, a,bN, pP).
Nem találtam megfelelő irodalmat, hol lehet bővebben olvasni erről a témáról?
|
|
|
|
[1093] Sirpi | 2010-03-16 11:07:03 |
Ugye a lánctört határértékben adja ki az értékét, és ha periodikus, akkor az általános trükk az, hogy ezt a határértéket elnevezzük A-nak, és megpróbálunk A-ra felírni egy egyenletet. Mivel , ezért határértékben: , vagyis A2-Aq+p=0, és ezt már csak meg kell oldani A-ra, ami egy sima másodfokú egyenlet.
Persze az még kérdés, hogy a 2 gyök közül melyikhez fog tartani a lánctört...
|
Előzmény: [1092] farkasroka, 2010-03-15 18:49:37 |
|
[1092] farkasroka | 2010-03-15 18:49:37 |
Sziasztok!
A következő sorozathoz keresnék képletet, ill. még arra lennék kíváncsi, hogy hogyan lehet egy általános lánctörtet átírni egyszerűre?
Segítségeteket előre is köszönöm!
|
|
|
|
[1090] Fernando | 2010-03-14 23:46:43 |
A wolfram-ba beírva: zeta(1) ok; zeta(2) ok; zeta(-1)=-1/12. Miért is?
|
|
[1089] Marika | 2010-03-13 16:01:18 |
Nagyon szépen köszönöm a gyors segítséget!
|
|
|
[1087] HoA | 2010-03-12 21:32:32 |
A szögek alapján még nem lenne kizárt ( 30 + 78 + 72 = 180 ) , de az egybevágósághoz az kéne, hogy az oldalhosszak is megegyezzenek. Az pedig "ránézésre" is látszik, hogy 72 fokos szöget közbezáró 6,5 és 7,3 cm-es oldalak mellett a harmadik oldal nem lehet 13,4 cm ( alig kisebb, mint a két másik összege, 13,8 ) . Pontos válasz a cosinus tétel alapján: teljesül-e, hogy 13,42=6,52+7,32-2*6,5*7,3*cos72o . Szerintem nem, de számold ki.
|
Előzmény: [1085] Marika, 2010-03-12 20:04:59 |
|
[1086] Radián | 2010-03-12 21:26:04 |
1084-re: Legyenek egy háromszög oldalai a,b,c, ahol a<=b<=c, ekkor a hegyesszögű háromszög oldalaira az alábbi feltétel teljesül: a*a+b*b>c*c ,ha a háromszög derékszögű: a*a+b*b=c*c (Pitagorasz-tétel),ha a háromszög tompaszögű: a*a+b*b<c*c (Ezek gyakorlatilag a koszinusztételből következnek.)
1085-re: Lehet egybevágó is, ha mindkét háromszög oldalainak hossza 6,5;7,3 és 13,4 cm , a szögek pedig a megfelelő módon 72,30,78 fokosak(13,4 cm-es oldalon fekvő 2 szög 30fok és 78fok, a vele szemközti pedig 72)hisz 72+30+78=180. Másképp nem lesz a két háromszög egybevágó.
|
Előzmény: [1085] Marika, 2010-03-12 20:04:59 |
|
[1085] Marika | 2010-03-12 20:04:59 |
Sziasztok! Ebben is segítségre szorulok. Egy háromszög két oldala 6,5cm és 7,3cm a közbezárt szög 72fok. Egy másik háromszög egyik oldala 13,4 a rajta fekvő 2 szög 30fok és 78fok. Egybevágó-e a két háromszög? köszönöm ha segittek megoldani .!
|
|
[1084] Marika | 2010-03-12 19:48:09 |
Sziasztok! Szeretnék segítséget kérni! Megmagyarázná valaki hogy kell ezt a feladatot meg csinálni? Hegyes szögű-e az a háromszög melyben a szokásos jelölésekkel? A=17cm B=11cm C=22cm Előre is köszönöm a segítséget!
|
|
[1083] Janosov Milán | 2010-03-11 00:33:50 |
Köszönöm a segítséget, és/de közben sikerült megoldanom a problémát (numerikus integrálással).
És esetleg azt lehet tudni, miért lassult be ma este a munkafüzet olyannyira, hogy esetenként tízszer kellett frissíteni, mire történt valami? Határidőkor ez kicsit tragikus :(
|
Előzmény: [1082] Alma, 2010-03-09 20:52:53 |
|