Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]  

Szeretnél hozzászólni? Jelentkezz be.
[1210] mologa2010-05-27 09:11:59

Ez a példa megoldokulccsal lett kijavitva s jó lett. Ezekböl probálok gyakorolni a vizsgára:) Sajnos én levelezöre járok egy fősulira, de ez a statisztika kifog rajtam:) Valami jo könyv kellene ami szinte dedós modszerrel elmagyarázza a statisztikát. A Bolyai-könyvekböl szoktam tanulni de néha az is tömören magyaráz.

Akkor ezeket az intervallumokat a normális eloszlás sűrűség fgv. alapján számolták ki? Igy adódott a -1,4559?

Előzmény: [1209] Fernando, 2010-05-26 23:04:49
[1209] Fernando2010-05-26 23:04:49

Itt az előjelekkel már megint van egy kis bibi. Amúgy képzeld el a normális eloszlás sűrűségfüggvényét, itt az osztályokat az empirikus várható értékre szimmetrikusan választottuk. Tehát a középső intervallum közepe éppen az emp. várható érték.

Előzmény: [1208] mologa, 2010-05-26 22:47:18
[1208] mologa2010-05-26 22:47:18

egyes osztály:-végtelen, -1,4559 kettes osztály: -1,4559, -0.5673 hármas osztály: -0,5673, -0.3213 négyes osztály: -0,3213, -1.2099 ötös osztály: -1.2099, végtelen

Azt értem hogy az osztály közök 0.8886. De az elsö osztályközt nem értem, hogy miért 1,4559 el kezdődik? Honnan jött ez az érték? Miböl kapta?

Előzmény: [1201] Fernando, 2010-05-26 21:04:55
[1207] Fernando2010-05-26 21:40:30

Philip J. Davis, Reuben Hersch: "A matematika élménye" című könyvében hosszan ír erről.

Felmerül Alfred Tarski neve és az axiómatikus tárgyalás - az axiómákból való formális nyelven történő levezetést már nevezhetjük bizonyításnak. Ugyanakkor ezt az eljárást -praktikus okokból- nem szokták követni még az egyetemi előadások sem. Tehát egyáltalán nem egyértelmű, hogy mit is jelent a bizonyítás. Egy matematikával foglalkozó ember nap mint nap igazol, megmutat, bizonyít állításokat, mégsem egyszerű válaszolni arra, hogy mit nevezhetünk bizonyításnak.

Előzmény: [1205] RRichi, 2010-05-26 21:26:57
[1206] Fernando2010-05-26 21:31:46

Igen, ebben tökéletesen igazad van Róbert Gida! Én azért írtam így, mert 90 től kezdve nyilván minden használatos szinten elfogadjuk (ill. nincs okunk elvetni, ha finoman fogalmazunk).

Előzmény: [1203] Róbert Gida, 2010-05-26 21:21:11
[1205] RRichi2010-05-26 21:26:57

Hello mindenki!

Hálás lennék, ha valaki meg tudná nekem mondani a matematikai bizonyítás teljesen percíz definícióját.

Válaszotokat előre is köszönöm!

[1204] Fernando2010-05-26 21:25:16

Megjegyzés: az osztályok számát úgy célszerű megválasztani, hogy a mintaelemszám és az osztályba esés valszínje szorzata -"elméleti gyakoriság"- legalább 10 legyen, különben osztályokat vonunk össze, de ezt a feladat nem kéri.

Előzmény: [1202] Fernando, 2010-05-26 21:13:20
[1203] Róbert Gida2010-05-26 21:21:11

Nem adta meg a szintet. Ekkor mindig 95 százalékos szintet szokás nézni.

Előzmény: [1202] Fernando, 2010-05-26 21:13:20
[1202] Fernando2010-05-26 21:13:20

Ha csakugyan jól számoltad a tesztstatisztika értékét, úgy még 90 százalékos szinten sincs okunk elvetni a hipotézist.

Előzmény: [1201] Fernando, 2010-05-26 21:04:55
[1201] Fernando2010-05-26 21:04:55

Ez becsléses illeszkedésvizsgálat. Az adatokból becsüljük a feltételezett normális eloszlás paramétereit. Gyanítom, hogy valamit elírtál, uis. ilyenkor az osztályoknak mínusz végtelentől végtelenig lenne praktikus terjedniük... Leszámítva az első és utolsó osztályt az osztályközt egyenlőnek szokás megválasztani.

A minta terjedelme kb 3,5 ezért a korrigált empirikus szórással egyenlő osztályköz kb megfelel itt. Kényelmes a korrigált empirikus szórást választani osztályköznek, mert így (kicsit) könnyebb számítani az i-dik intervallum valószínűségét.

Előzmény: [1199] mologa, 2010-05-26 18:03:26
[1200] Fernando2010-05-26 20:22:34

A k=2 eset nagyon ismert Dr. Németh József tanítványai körében. :) Nekem a legjobban Euler bizonyítása tetszik, igaz ott jónéhány lépés létjogosultsága kérdéses. Németh József: Előadások a végtelen sorokról (Polygon): ebben olvasható vagy három biz.

Előzmény: [1173] D. Tamás, 2010-05-20 19:08:29
[1199] mologa2010-05-26 18:03:26

Igazolja, hogy a minta normális eloszlású Adja meg a khi2 statisztika értékét ha az osztályok száma öt?

-1.48 , -1.48 , -1.45 , -1.06 , -1.05 , -1.04 , -1.04 , -0.94 , -0.94 , -0.75 , -0.70 , -0.55,-0.53 -0.48 , -0.38 , -0.09 , -0.05 , 0.04 , 0.05 , 0.11 , 0.18 , 0.19 , 0.32 , 0.36 , 0.48 , 0.51 , 0.60 0.70 , 0.70 , 0.83 , 1.30 , 1.50 , 2.08

minta elemszáma n = 33 átlag= -0,123 osztályok száma r=5 egy osztály szélessége Scsillag=0.8886 Scsillag= korrigált tapasztalati szórás :)) Az osztály szélességre miért a korrigált tapasztalati szórást veszi?

Osztály közök minusz végtelen-1.4559 -1,4559, -0,5673 -0,5673, -0,3212 -0.3212, -1,2099 -1,2099, minusz végtelen

Az osztály közök miért igy alakultak? Ezt nem értem:)

[1198] mologa2010-05-26 16:58:47

Sirpi elküldtem neked emailbe :)

[1197] mologa2010-05-26 16:51:34

uhhhh ez össze vissza mászott :))

[1196] mologa2010-05-26 16:49:44

2. Igazolja, hogy a minta normális eloszlású Adja meg a khi2 statisztika értékét ha az osztályok száma öt?

-1.48 , -1.48 , -1.45 , -1.06 , -1.05 , -1.04 , -1.04 , -0.94 , -0.94 , -0.75 , -0.70 , -0.55,-0.53 -0.48 , -0.38 , -0.09 , -0.05 , 0.04 , 0.05 , 0.11 , 0.18 , 0.19 , 0.32 , 0.36 , 0.48 , 0.51 , 0.60 0.70 , 0.70 , 0.83 , 1.30 , 1.50 , 2.08

minta elemszáma n = 33 A becsült paraméterek (átlag)=-0.123 korrigált szórás S csillag= 0.8886 Az osztályok száma r = 5

Egy osztály szélessége S csillag= 0.8886 Az osztály szélességre miért a (szórást) 0.8886 ot veszi?

Osztály közök Pi nPi

- - 1.4559 2 0.0668 2.2044 0.0190

-1.4559, -0.5673 9 0.2417 7.9761 0.1344

-0.5673, -0.3213 12 0.3830 12.639 0.0323 -0.3213, -1.2099 7 0.2417 7.9761 0.1195

-1.2099, - 3 0.0668 2.2044 0.2871 khi2=0.5893 Az osztályközök értéki miért igy jöttek ki? Ezt nem értemL Valaki levezeti

[1195] Sirpi2010-05-26 16:42:37

Nem jó áthidaló megoldás esetleg (amíg rutinszerűen bele nem jössz a TeX-be) képként bepakolni?

Előzmény: [1194] mologa, 2010-05-26 16:40:15
[1194] mologa2010-05-26 16:40:15

Sajnos nem tudom bemásolni a word-ben irt feladatot. Mig TeX-ben irnám meg kirügyeznék:))

[1193] Róbert Gida2010-05-24 10:28:40

Ez így nem igaz. 20+1=2 prím, de 0 nem 2-hatvány.

Előzmény: [1190] Hölder, 2010-05-23 23:49:40
[1192] Hölder2010-05-24 09:09:22

Szia! Köszi szépen. :-)

Előzmény: [1191] Sirpi, 2010-05-24 00:20:10
[1191] Sirpi2010-05-24 00:20:10

641|225+1, sőt, 4 fölött nem találtak még olyan kitevőt, ami prímet eredményezne. Bővebben.

Előzmény: [1190] Hölder, 2010-05-23 23:49:40
[1190] Hölder2010-05-23 23:49:40

Sziasztok! Azon gondolkodtam el,hogy ha 2(n)+1 prim (kitevőben van az n), akkor n kettő hatvány (Fermat primek),de forditva igaz -e, azaz, ha n kettőhatvány,akkor 2(n)+1 prim, megnéztem egy jó ideig,addig igaz volt,az a sejtésem, hogy nem az.

[1189] Maga Péter2010-05-22 10:41:45

Páros k-ra:

\zeta(k)=-\frac{(2\pi i)^k}{2k!}B_k.

Itt Bk a Bernoulli-szám, a következő hatványsor normált együtthatóiból adódik:

\frac{x}{e^x-1}=\sum_{k=0}^{\infty}B_k\frac{x^k}{k!}.

Forrás: H. Iwaniec, Topics in Classical Automorphic Forms, Amer. Math Soc. (1997), 12. oldal.

Előzmény: [1188] jenei.attila, 2010-05-22 08:30:18
[1188] jenei.attila2010-05-22 08:30:18

Jogos a kiegészítés, köszönöm szépen. Erre gondoltam én is, csak kicsit pontatlanul fogalmaztam. Páros kitevőkre az a bizonyos racionális szám hogyan adható meg k függvényében? Igazából arra gondoltam, hogy erre létezik egy zárt képlet. Meglehet, hogy \zeta(3) rac. együtthatós polinomjaként kifejezhető páratlan k-kra is \zeta(k).

Előzmény: [1184] Maga Péter, 2010-05-21 11:43:15
[1187] Maga Péter2010-05-21 19:20:39

Pardon, köszönöm.

Előzmény: [1186] Róbert Gida, 2010-05-21 18:52:28
[1186] Róbert Gida2010-05-21 18:52:28

\zeta(3)-ról 1979-ben bizonyította be Apéry, hogy irracionális.

Előzmény: [1184] Maga Péter, 2010-05-21 11:43:15

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]