Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]  

Szeretnél hozzászólni? Jelentkezz be.
[1318] bily712010-09-12 19:36:38

Nézzük a jobboldalt tagonként:

a5=a1q4

a6=a1q5=a2q4

a7=a1q6=a2q5=a3q4

(itt azt használtuk fel, hogy an=amqn-m )

behelyettesítés után:

a5+a6+a7=a1q4+a2q4+a3q4

ebből a q4 tényezőt kiemelve kapjuk, hogy:

a5+a6+a7=q4(a1+a2+a3)

és innen már tudni fogod.

Előzmény: [1317] gerpet, 2010-09-12 19:05:19
[1317] gerpet2010-09-12 19:05:19

Sziasztok! Lenne egy feladat, aminek a megoldását nem értem. Előre is elnézést kérek a rutinosabbaktól, hogy ilyen "egyszerű" (a feladatgyűjteményben, mint könnyű feladat szerepel) feladattal zargatlak benneteket. A feladat: "Egy mértani sorozat első hét tagjából az első három elem összege 26, a három utolsó elem összege pedig 2106. Mennyi a hét tag összege?" Az lenne a kérdésem, hogy az alábbi megoldásban az első egyenlőség hogyan jön ki?:

[1316] bily712010-08-27 07:34:45

Valóban, elég az, hogy a egész.

Előzmény: [1315] R.R King, 2010-08-26 11:21:44
[1315] R.R King2010-08-26 11:21:44

Szerintem a-ról nem kell feltenni a pozitivitást.

Előzmény: [1314] bily71, 2010-08-26 08:34:15
[1314] bily712010-08-26 08:34:15

Dirichlet: a és d pozitiv egész számok és (a,b)=1, ekkor az a kezdőtagú és d differenciájú számtani sorozatnak végtelen sok prim eleme van.

Előzmény: [1313] Róbert Gida, 2010-08-25 22:56:55
[1313] Róbert Gida2010-08-25 22:56:55

Te meg éppen gyengíted a Dirichlet tétel feltételeit.

Előzmény: [1311] bily71, 2010-08-24 22:27:27
[1312] vogel2010-08-24 22:41:56

Aki ezt olvassa, azért talán kitalálja, miért ellenpélda az ellenpélda. :-)

Előzmény: [1311] bily71, 2010-08-24 22:27:27
[1311] bily712010-08-24 22:27:27

Igazad van, de egy ilyen ellenpélda magyarázat nélkül összezavarhatja a diákokat, mondd el azt is, hogy miért!

A lényeg: az a1>0 és d>0 feltétel hiányzik.

Az ellenpéldádban a differencia d=0.

Előzmény: [1310] Róbert Gida, 2010-08-24 20:03:19
[1310] Róbert Gida2010-08-24 20:03:19

Dirichlet tétel nem így szól, hiszen az a(n)=1 számtani sorozat a feltételeidet teljesíti, mégsem tartalmaz végtelen sok prímet.

Előzmény: [1307] D. Tamás, 2010-08-24 12:07:02
[1309] D. Tamás2010-08-24 16:45:58

Köszi.

Előzmény: [1308] nadorp, 2010-08-24 13:17:06
[1308] nadorp2010-08-24 13:17:06

www.math.nus.edu.sg/~chanhh/MA4263/Chapter7.pdf

Előzmény: [1307] D. Tamás, 2010-08-24 12:07:02
[1307] D. Tamás2010-08-24 12:07:02

Tudna valaki mondani nekem egy olyan internetes oldalt (magyar/angol nyelvűt), amelyen le van írva Dirichlet azon tételének bizonyítása, miszerint ha egy számtani sorozatban az első tag és a differencia relatív prím, akkor az adott sorozatban végtelen sok prímszám található?

[1306] Higgs2010-08-18 21:05:55

Köszönöm a linket, nagyon jó!

[1305] Tóbi2010-08-18 16:06:16

Szerintem is Jenei Attilának van igaza, nyomdahibás lehet a feladat. Az eredeti változat megoldásait programmal megkeresve: (1,1,1003), (1,17,59), (3,3,143), (3,20,24)

Előzmény: [1299] D. Tamás, 2010-08-16 13:26:19
[1304] Fálesz Mihály2010-08-18 13:48:32

A legtöbb számelmélet tankönyben benne van. (Szalai, Freud-Gyarmati, Niven-Zuckermann stb.)

Előzmény: [1300] Higgs, 2010-08-18 11:07:16
[1303] Fálesz Mihály2010-08-18 13:37:40

Mivel abc\leabc+ab+ac+bc-a-b-c=2005<12.13.14, és az a,b,c számok különbőzők, valamelyikük legfeljebb 11. Ez 11 eset, mindegyik jól kezelhető...

Előzmény: [1299] D. Tamás, 2010-08-16 13:26:19
[1302] jenei.attila2010-08-18 13:08:51

Nem lehet, hogy el van írva a feladat, és a z együtthatói a lineáris egyenletrendszerben pozitívak? Mert akkor könnyen meg lehetne oldani, ugyanis z=a+b+c lenne, és az x+y+z=abc+ab+ac+bc+a+b+c=(a+1)(b+1)(c+1)-1=2005 egyenletből (a+1)(b+1)(c+1)=2006=2*17*59 adódna. Vagyis a=1,b=16,c=58 lenne a helyes megoldás, illetve ennek tetszőleges permutációi. Így én sem látok más megoldást, mint kipróbálgatni (ami nem olyan hosszú, mert a,b,c számok nem lehetnek akár mekkorák (programmal könnyen megy). Persze lehet, hogy helyesen lett kitűzve a feladat, és nem veszünk észre valami trükköt. Most már engem is érdekel. Egyébként az egyenletrendszer megoldása nagyon egyszerű, ha észrevesszük, hogy az a,b,c számok a t3+zt2+yt-x=0 t-ben harmadfokú polinom gyökei (ezt írja le az egyenletrendszer). Felírva a gyökök és együtthatók közti összefüggéseket kifejező Viéte formulákat, azonnal adódik az általad is felírt megoldás.

Előzmény: [1299] D. Tamás, 2010-08-16 13:26:19
[1301] sakkmath2010-08-18 12:45:56

Shiva Kintali: A Generalization of Erdös's Proof of Bertrand-Chebyshev Theorem

Előzmény: [1300] Higgs, 2010-08-18 11:07:16
[1300] Higgs2010-08-18 11:07:16

Üdv!

Valaki tudna adni egy linket, ahol a Csebisev-tétel Erdős Pál féle bizonyítása található, mert sehol sem találom? Ha ilyen nincs, akkor más bizonyítással is beérem.

[1299] D. Tamás2010-08-16 13:26:19

Kérnék egy kis segítséget a 2005-ös Hajós György matematikaverseny 2. feladatával kapcsolatban: (Innen könnyen elérhető a feladatsor).

Az egyenletrendszert elkezdtem megoldani, és azt kaptam hosszadalmas átalakítások útján hogy x x=abc y=ab+ac+bc z=-(a+b+c)

Azonban így egy diofantoszi egyenlethez jutunk, ahol nem sikerült továbbjutni:

abc+ab+ac+bc-a-b-c=2005

[1298] Fernando2010-08-03 10:38:44

Nem lehet, hogy szerencsejátéknál jogilag is aggályos, hogy egy számítógép egy algoritmus alapján számolja ki a "nyerteseket"? Ezért is gondolok "káoszgépre" mint megoldásra, pl olyanra, mint a gépi lottó húzásnál, vagy a kenónál is volt vmi gép.

Ilyen szerencsejátékoknál nem gondolom, hogy egy ember "kidobálja", mert az megint aggályos.

Az, hogy egy ember dobókockával, vagy pénzérmével állít elő véletlen sorozatot, másra vonatkozott, nem a puttóra és nem több milliós dobásszámmal. Azt "ösztönösen" kizártnak tartom, hogy pl dobókockánál az emberi tényező miatt szabályosság lesz, mert a kezdeti feltételek nagyon pici megváltozása (pl 0,01 százalék perdületváltozás) esetén teljesen más eredmény jön ki.

(Olyan dobókockánál, amiből kivájt pontokkal jelölik a számokat a súlypont eltolódik, így a várható érték is.)

[1296] Fernando2010-08-03 10:28:00

100 százalékos véletlen nincs, ez szleng. Van véletlen és nem véletlen jelenség.

"Véletlen jelenség: kimenetelét az általunk figyelembe vett tényezők összessége nem határozza meg egyértelműen. TEHÁT EGY JELENSÉG VÉLETLEN VOLTA NAGY MÉRTÉKBEN FÜGG ATTÓL, HOGY MENNYI INFORMÁCIÓ ÁLL RENDELKEZÉSÜNKRE."

(Viharos László: A sztochasztika alapjai, jegyzet)

[1297] Erben Péter2010-08-03 09:20:07

A "megjósolhatóság" nehéz kérdés. Ismét Lovász László egy írását ajánlom (a 7. fejezetet konkrétan), de ne számíts könnyen programozható receptre, ami bizonyíthatóan "100%-os".

http://www.cs.elte.hu/~kiraly/alg.pdf

Érdemes még az "egyirányú" avagy "csapóajtó" függvényekre keresni, ha további konkrétumok érdekelnek.

Előzmény: [1293] Hosszejni Darjus, 2010-08-02 12:22:56
[1294] bily712010-08-02 12:36:05

Egy sorozat akkor véletlen, ha nem irható le rövidebben, mint a saját hossza.

Előzmény: [1292] Fernando, 2010-08-02 11:24:26
[1293] Hosszejni Darjus2010-08-02 12:22:56

annyira nem vagyok benne a témában, hogy én ilyet pontosan definiálni tudjak. mondjuk legyen az alul linkelt cikkben a "megjósolhatatlan".

Előzmény: [1292] Fernando, 2010-08-02 11:24:26

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]