Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A régi honlapot akarom!!! :-)

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]  

Szeretnél hozzászólni? Jelentkezz be.
[1637] lorantfy2012-01-19 14:40:36

Valóban. Bocs! A rajzot értekezlet közben csináltam és nem emlékeztem az eredeti sugárra.

Előzmény: [1631] jonas, 2012-01-18 20:26:01
[1636] gubanc2012-01-19 14:19:29

Véletlenül hozzám került két feladat e lapból. Ezeket nem tudtam megoldani, ezért e topic [860]-as és az Érdekes matekfeladatok [2894]-es hozzászólásában föltettem őket.

Előzmény: [1634] Róbert Gida, 2012-01-19 00:36:10
[1635] R.R King2012-01-19 06:33:22

Gondolom, ha a matematika tanításával foglalkozik, akkor többnyire matektanárok. A kérdéses feladat pedig a feladatrovat tanároknak részben volt kitűzve.

Előzmény: [1634] Róbert Gida, 2012-01-19 00:36:10
[1634] Róbert Gida2012-01-19 00:36:10

Még életemben nem hallottam erről a lapról. És azt a folyóiratot ki olvassa?

Előzmény: [1632] R.R King, 2012-01-18 21:32:09
[1633] bily712012-01-18 21:56:34

Az, hogy végtelen sok p,p+2 prím párra p+(p+2)\pm1=2(p+1)\pm1 prímek, erősebb sejtés-állítás, mint hogy végtelen sok p,p+2 prím pár létezik, hiszen feltételezi az ikerprím-sejtés igaz voltát, ugyanis csak végtelen sok ikerprím párból választható ki végtelen sok fenti tulajdonságú pár.

Előzmény: [1628] Jhony, 2012-01-14 10:17:54
[1632] R.R King2012-01-18 21:32:09

Ez a Matematika Tanítása folyóiratból való feladat nem?

Előzmény: [1625] epsilon, 2012-01-13 11:47:10
[1631] jonas2012-01-18 20:26:01

A rajz lényegében helyes, de szerintem a számok nem stimmelnek. Helyesen  r_1 = 2\sqrt{3}/3 megegyezik a gömb sugarával, a másik körök sugara  r_2 = 1/\sqrt{3} \approx 0.58 .

Előzmény: [1630] lorantfy, 2012-01-18 17:26:59
[1630] lorantfy2012-01-18 17:26:59

Végül szabadkézi rajz lett, de látszik rajta a lényeg. A pirossal és zölddel jelölt pontok az O ponttól r1 távolságra vannak, így biztosan rajta vannak a gömbön. A zöld körívek r2 sugarúak.

Előzmény: [1629] epsilon, 2012-01-18 09:39:59
[1629] epsilon2012-01-18 09:39:59

Tisztelt Fórumtagok! Továbbra is érdekel a kocka és a gömb metszésvonala, ígyhát bárkitől szívesen várok bármilyen ötletet. Üdv: epsilon

[1628] Jhony2012-01-14 10:17:54

köszönöm a választ,de a kédrésem arra utal ,vannak e hasonló iker prímek (magasabb számtartományokban is ) és,ha igen meddig - talán végtelen - szóval olyan iker prímek melyek összege plusz/minusz egy újabb ikerprímet generál (alkot)

Előzmény: [1618] bily71, 2012-01-10 18:57:36
[1627] epsilon2012-01-13 15:48:23

Üdv lorantfy! Köszi, hogy a témában hozzászóltál, és előre köszönöm, ha rajzprogram is lesz a kezedügyében. Nekem nincs ilyen, gy közönséges rajzzal próbálkoztam kísérletezni, de én csak annyit látok, mintha 3 különálló körív lenne, ellenben ezek egymással kongruensek (szimmetria okok miatt). Jó lenne, ha megtudhatnám, hogy ez a sejtésem igaz-e? Előre is kösz mindennemű segítségedet! További szép napot!

Előzmény: [1626] lorantfy, 2012-01-13 14:37:35
[1626] lorantfy2012-01-13 14:37:35

A gömb és a kocka lapjainak metszésvonalai körívek lesznek. Kétféle lap lesz ilyen szempontból. Az egyiken 3xgyök(3)/2 sugarú körív lesz, a másikon gyök(3)/3 sugarú körív. Ha rajzólóprogram közelben leszek, majd felteszek egy ábrát.

Előzmény: [1625] epsilon, 2012-01-13 11:47:10
[1625] epsilon2012-01-13 11:47:10

Üdv mindenkinek, és először is BÚÉK! Máris lenne egy kérdésem: Adott egy 1 egységnyi kocka, annak valamelyik csúcsában mint középpontban r=2×gyök(3):3 sugarú gömböt rajzolunk. Érdekelne a kockafelület és a gömbfelület (közös) metszésvonala.Miből áll ez? Hogy látható? Valaki tudna-e segíteni ebben? Előre is köszönöm, további szép napot: epsilon

[1624] sakkmath2012-01-11 23:28:47

Ezt az oldalt mostanában eltávolíthatták. Erre utal a Google egy tárolt pillanatfelvétele itt.

Az oldal utódja talán ez.

Előzmény: [1621] Jhony, 2012-01-11 18:42:39
[1623] SmallPotato2012-01-11 22:51:04

Nálam: "404 error: File not found"

Előzmény: [1621] Jhony, 2012-01-11 18:42:39
[1622] Hölder2012-01-11 21:47:11

Szerintem ugyanazt a mátrixot jelentik, mert a Jordan-blokkok megegyeznek. Persze lehet, hogy nem jól mondom. Kiss Emil algebra könyvében biztosan van erre is valami hasznos, de az okosabbak véleményét kérdem, mondjuk az ottani definíció alapján. Persze előfordulhat, hogy a definíció sem egyértelmű. Sajnos nem tudom a választ...

Előzmény: [1620] jonas, 2012-01-11 10:16:03
[1621] Jhony2012-01-11 18:42:39

- erről mi a véleményetek ?

http://upload.wikimedia.org/wikipedia/commons/7/7f/Zeta-polar.svg

Előzmény: [1618] bily71, 2012-01-10 18:57:36
[1620] jonas2012-01-11 10:16:03

Ehhez pontos definíciók kellenének. A következő két mátrix Jordan-normálalakban van?


A = \left(\matrix{0&0\cr0&1}\right),


B = \left(\matrix{1&0\cr0&0}\right).

Előzmény: [1619] Hölder, 2012-01-11 10:08:28
[1619] Hölder2012-01-11 10:08:28

Legyen A és B két n-ed rendű valós elemekből álló mátrix. Igaz -e az, hogy akkor és csakis akkor hasonlóak egymáshoz, ha a Jordan-normálalakjuk megegyezik?

[1618] bily712012-01-10 18:57:36

Ellenpélda: 120-1=119=7.17, 120+1=11.11, 120=103+17.

A Goldbach-sejtés szerint minden 2-nél nagyobb páros előáll két prím összegeként. A 2n\pm1 alakú (páratlan) számok között a prímek egyre ritkulnak, ahogy n nő, így amit írtál, hogy legalább az egyik szomszéd prím, egyre ritkábban fordul elő, az ikerprím-sejtés ennek ellenére azt mondja, hogy végtelen sok esetben mindkét szám prím.

Előzmény: [1615] Jhony, 2012-01-10 18:23:35
[1617] Jhony2012-01-10 18:52:56

- vagy az (5,7) -hez hasonló a (29.31) , vagyis 29+31=60 +/- 1 = 59/61 vagyis (59,61) ikerprím

- sok van még ilyen ?

Előzmény: [1616] Jhony, 2012-01-10 18:48:07
[1616] Jhony2012-01-10 18:48:07

- egy matematikai ikerprímekkel kapcsolatos feladat,kérdésem, a következő ,,véges vagy végtelen azon ikerprímek sora ,(mint pl. az 5,7) melyek összege plusz,mínusz egy ,kettő újabb,másik prímszámot generál,alkot ?"

- sőt kicsit tovább megyek és azt kérdezem : ,,véges vagy végtelen azon ikerprímek sora melyek összege plusz,mínusz egy, másik,újabb ikerprímet generál,alkot ?" - erre példa az (5,7) lásd. 5+7=12 +/- 1 = 11/13

- a válaszokat és a segítséget előre is köszönöm !

Üdvözlettel,Jhony !

Előzmény: [1615] Jhony, 2012-01-10 18:23:35
[1615] Jhony2012-01-10 18:23:35

Köszönöm szépen a választ ! --- nos a kettő közül,az egyikhez hasonló ez lenne ,,két prímszám összege plusz,minusz egy legalább egy ,de lehetséges,hogy kettő újabb prímszámot(számokat) generál(alkot)" .

Előzmény: [1614] HoA, 2012-01-09 22:25:17
[1614] HoA2012-01-09 22:25:17

Attól tartok, bármilyen óvatosan fogalmazol is, nemhogy manapság, de szerintem az utóbbi kétszáz évben szinte reménytelen, hogy érdekes vagy hasznos - mások által nem ismert és nem triviális - sejtése legyen valakinek, aki nem rendelkezik az érintett matematikai ágazat mély ismeretével. Itt a fórum támái között több helyen találsz utalást hasonló kérdésekre. Például Goldbach sejtés, ikerprím sejtés.

Előzmény: [1613] Jhony, 2012-01-09 17:30:46
[1613] Jhony2012-01-09 17:30:46

- megtudná-e mondani valaki mi a helyzet manapság ,ha valakinek van egy vagy kettő matematikai sejtése - már csak az a kérdés,hogy máig senki által nem említett sejtések-e és ...,hogy a matematika ,,világában" mennyire számítanak ,számítanának ,,érdekes",mondjuk ,,hasznos" sejtésnek - bizonyos szemszögből nézve ...

- a válaszokat,hozzászólásokat előre is köszönöm !

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]