[208] gdoki | 2007-06-23 00:26:11 |
Hi bárki!
Főiskolás volnék és nagyon elhanyagoltam a matekot...most szeretném bepótolni, csak rövid az időm az alábbi feladatra. Válaszokat előre is köszönöm!
|
|
|
|
|
[205] farkasroka | 2007-06-13 17:22:43 |
Sziasztok!
Azt szeretném tudni, hogyan lehet az 1/x függvény folytonosságát bizonyítani közvetlenül a definícióból, pontosabban hogyan függ a delta az epszilontól a szokásos jelölésekkel?
Elnézést a triviális kérdésért, segítségeteket előre is köszönöm!
|
|
|
[203] Csimby | 2007-05-23 01:22:00 |
Zn az n rendű ciklikus csoport. Zn×Zk pedig ezek direkt-szorzata, úgy képzeld el, hogy minden elemnek van két koordinátája és a csoport művelet az elsőkoordinátán Zn-ből a másodikon Zk-ból öröklődik. Tehát (a,b) összeműveletezve (c,d)-vel egyenlő (a+c,b+d)-vel ahol a-t és c-t Zn-ben adtuk össze, b-t és d-t pedig Zk-ban. Könnyen látható hogy ez csoport és rendje nk. (Zn-re gondolhatunk úgy mint a modulo n maradékosztályokra az összeadásra nézve, és mivel Abel-csoport, ezért írtam "+"-val a műveletet, ekkor az egység elem a 0, a generátor elem (ami önmagával összeműveletezve kiadja az egész csoportot) pedig az 1). Már csak azt kell meggondolni, hogy Z27×Z3-ban (1,0) rendje tényleg 27, vagyis (1,0)+...+(1,0) (27-szer összeadva) tényleg egyenlő (0,0)-val. És hogy Z27×Z3 nem ciklikus (vigyázat pl. Z4×Z3 ciklikus). De mondjuk más ellenpélda is lehetséges, mivel g29=g2 akkor is teljesül pl. ha g3=1 vagy g9=1. Vagy esetleg g maga az egységelem.
|
Előzmény: [202] phantom_of_the_opera, 2007-05-22 22:40:03 |
|
|
[201] Csimby | 2007-05-22 22:18:03 |
g29=g2-ből g27=1. A 81 rendű csoport lehet akár Z27×Z3, amiben van 27-rendű elem pl. (1,0) ahol 1 Z27 generátoreleme, 0 pedig Z3 egységeleme. De ez a csoport nem ciklikus. Remélem nem írtam hülyeséget.
|
Előzmény: [200] phantom_of_the_opera, 2007-05-22 11:18:59 |
|
[200] phantom_of_the_opera | 2007-05-22 11:18:59 |
Sziasztok!
Egy csoportelméleti kérdésem lenne, amennyiben valaki tud segíteni. Azt kellene bebizonyítanom, hogy ha egy 81 rendű csoportban van olyan elem, amelyre g29=g2, akkor a csoport ciklikus. A gond az, hogy nem sikerül...
Előre is köszi.
|
|
|
|
[197] Lóczi Lajos | 2007-04-17 00:06:51 |
http://mathworld.wolfram.com/HadwigerProblem.html
http://mathworld.wolfram.com/CubeDissection.html
Ezek megmondják, hogy az Amer. Math. Monthly melyik számában van meg a megoldás, a könyvtárban tehát utánanézhetsz szükség esetén.
|
Előzmény: [196] V Laci, 2007-04-16 14:29:56 |
|
[196] V Laci | 2007-04-16 14:29:56 |
Szia!
Igen, tényleg ezt szeretném bizonyítani. A többi maradékra már megvan a szerintem legkisebb konstrukció, azonban az 5-ös maradékra a legkisebb, amit elő tudtam állítani, az a 61 kockás darabolás. És szeretnék lejjebb menni. :)
|
Előzmény: [195] Sirpi, 2007-04-16 13:38:38 |
|
[195] Sirpi | 2007-04-16 13:38:38 |
Szia!
Fel tudtam valaha, egyszer már végigküzdöttem ezt. Gondolom azt akarod bizonyítani, hogy ha n>47, akkor egy kocka felosztható n kisebb kockára, és ebből tényleg a legnehezebb lépés az n=54 eset megoldása. Ugye ha összevonunk 8 egybevágó kockát egy kétszer akkorává, akkor a darabszám 7-tel csökken, vagyis ilyen lépések során a 7-es maradék nem változik. Éppen ezért elég minden 7-es maradékú n-re megoldani a felosztást, ugyanabban a maradékosztályban a nagyobbakra automatikusan adódik.
A nagy kockánál ez a maradék 1, viszont nekünk az 5-ös maradékot kell megcéloznunk, tehát 4-gyel kell növelni. Egy kocka 3x3x3-má vágása 2-vel csökkenti a 7-es maradékot, ugyanígy 3x3x3 összeforrasztása meg 2-vel növeli. Régen is így csináltam valahogy, de most még nem látom még pontosan, hogy hogy is volt a tényleges felosztás, de hátha ez alapján valaki más gyorsan megcsinálja :-)
|
Előzmény: [194] V Laci, 2007-04-16 13:08:16 |
|
[194] V Laci | 2007-04-16 13:08:16 |
Sziasztok! Fel lehet-e darabolni egy kockát 54 kiskockára? Ha igen, hogyan? Előre is köszönöm!
|
|
[193] HoA | 2007-04-12 15:02:16 |
1/7 tizedestört alakban = 0,142857142857142857142857142857... , vagyis a jegyek 6-osával ismétlődnek. 2004 osztható 6-tal ( 3-mal osztható és páros ) , tehát a 2005-ik jegy a ciklus első jegye, vagyis 1.
|
Előzmény: [190] hajnalkalive, 2007-04-11 18:32:35 |
|
[192] phantom_of_the_opera | 2007-04-11 23:22:44 |
Sziasztok! Gráfos feladattal kapcsolatban kérnék segítséget: Bizonyítsuk be, hogy ha egy n pontú egyszerű gráf leghosszabb útja két végpontjának fokszámösszege legalább n, akkor a leghosszabb utak között van 2, amelyek végpontjai szomszédosak. Előre is köszönöm.
|
|
|
[190] hajnalkalive | 2007-04-11 18:32:35 |
Tud segíteni valaki?
Mennyi 2005 számjegy a tizedesvessző után 1/7 tizedestört alakban?
Egy téglalp átlói d cm hosszúak, az átlók által bezárt hegyesszög alfa fok. Fejezzük ki a téglalp területét és kerületét d-vel és alfával.
|
|
|
[188] Lóczi Lajos | 2007-04-10 23:39:52 |
Reggelre kell? :)
Biztos leírtunk egy ilyet már itt: Pitagorasz-tétel a jobboldali tag kitevőjében (cos2(x)=1-sin2(x)), új ismeretlen (A:=4sin2(x)) és másodfokú egyenlet.
4sin2(x)+41-sin2(x)=4, azaz A+4/A=4, vagyis A1,2=2, tehát , ezt meg kitalálod.
|
Előzmény: [187] pvong17, 2007-04-10 23:16:19 |
|
[187] pvong17 | 2007-04-10 23:16:19 |
Üdvözlet mindenkinek!
Jó lenne a segítene valaki ebben , már nem nagyon tudok sehová fordulni:
4sin2x + 4cos2x = 4
|
|
|
[185] Willy | 2007-03-30 16:50:25 |
Szeretnék egy egyszerű modellt kreálni a globális felmelegedés modellezésére, de honnét lehetne megbízható adatokat szerezni? (Pl.: CO2 mennyire fogja vissza a meleget... ezt a molekula méretéből is meg lehet-e mondani?)
|
|
|