Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]  

Szeretnél hozzászólni? Jelentkezz be.
[2148] epsilon2017-12-13 16:28:36

Üdv mindenkinek. Segítségre lenne szükségem, mert elmerültem egy dologban. Arról van szó, hogy sin(f(x+y)=sin(f(x)+f(y)) minden x, y VALÓS számra, ahol f(x) egy valós, mindenütt folytonos függvény az R-ből az R-be. A fenti egyenletből következik-e, hogy f(x+y)=f(x)+f(y)+2nPi minden x, y VALÓS számra, vagy f(x+y)=-f(x)-f(y)+(2n+1)Pi minden x, y VALÓS számra? Vagyis továbbvíve a gondolatot, ha f folytonos, akkor az f(x+y)=f(x)+f(y)+2nPi Cauchy egyenlet összes folytonos megoldásai f(x)=ax+b alakú, továbbá az f(x+y)=-f(x)-f(y)+(2n+1)Pi egyenlet összes megoldása f(x)=kPi. A kérdés tehát: Ha sin(f(x+y)=sin(f(x)+f(y)) minden x, y VALÓS számra, f mindenütt folytonos, akkor biztosan igaz-e, hogy f(x)=ax+b, vagy f(x)=kPi? Vagy van arra ellenpélda, hogy bizonyos esetekben az egyik függvényegyenlőség igaz, más esetben a másik, de f mégis folytonos mindenütt? Nem sikerül szerkesztenem ilyen ellenpéldát. Ugyanez a kérdésem lenne cos(f(x+y)=cos(f(x)+f(y)) minden x, y VALÓS számra, ha f mindenütt folytonos. Előre is köszönöm a válaszotokat!

[2147] Erben Péter2017-12-06 19:11:19

Nagyon izgalmas filozófiai kérdés, hogy egy választási rendszer eredménye ,,tükrözi-e a választói akaratot” avagy a választási rendszer „igazságos-e”, de nem könnyű az ilyen kérdéseknek matematikai tartalmat adni.

Tetszőleges választási rendszer esetén általában nagyon könnyű olyan szavazat eloszlást mutatni, ami mellett az adott rendszer igazságtalannak tűnik. Ezen még az sem segít, ha előre megadjuk, milyen kritériumoknak kell megfelelnie egy választási rendszernek és csak utána próbáljuk meghatározni az eljárást. A leghíresebb ilyen negatív eredmény az Arrow-paradoxon, de sokkal egyszerűbb példával is illusztrálhatjuk a „nehéz igazságos választási rendszert csinálni” állítást.

Tegyük fel, hogy példádhoz hasonlóan listákról akarunk kiosztani \(\displaystyle M\) mandátumot. Induljon \(\displaystyle N\) párt a választáson, és az \(\displaystyle i.\) kapjon \(\displaystyle s_i\) szavazatot. Tegyük fel, hogy a választás eredménye az, hogy a \(\displaystyle P_i\) párt \(\displaystyle m_i\) mandátumot nyert és \(\displaystyle \sum m_i = M\). Az egyetlen, amit szeretnénk elvárni a választási rendszertől, hogy ha \(\displaystyle s_i \ge s_j\), akkor \(\displaystyle m_i \ge m_j\) is igaz legyen.

Legyen most \(\displaystyle M = 2\), \(\displaystyle N = 12\), és a pártokra leadott szavazatok sorban: \(\displaystyle (2,2,1,1,1,1,1,1,1,1)\). Feltételünk szerint az egyetlen megengedett eredmény, hogy \(\displaystyle P_1\) és \(\displaystyle P_2\) nyer 1-1 mandátumot, a többiek pedig semmit. Ez viszont azt jelenti, hogy az aktív választók kétharmadának egyetlen képviselője sem lesz, amit nehéz igazságosnak tekinteni. Itt az „igazságtalanságot” talán inkább a mandátumok oszthatatlansága okozza, és nem valamilyen a rendszerbe beépített trükk.

A példádban említett eljárás neve d'Hondt módszer, és ez egy érdekes cikk róla. A Wikipédia szócikkben egy online kalkulátor is linkelve van, amivel lehet kísérletezgetni.

Előzmény: [2145] marcius8, 2017-12-03 14:30:36
[2146] marcius82017-12-03 16:43:13

Pontosítok az előbbi hozzászólásomon: Ha valamelyik \(\displaystyle y_{i,j}\) hányados valamilyen \(\displaystyle x_i\) és valamilyen \(\displaystyle j\) esetén benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között, akkor a \(\displaystyle P_i\) párt egy mandátumot kap. Továbbá a \(\displaystyle P_i\) párt annyi mandátumot kap, ahány \(\displaystyle y_{i,j}\) hányados benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között valamilyen \(\displaystyle x_i\) és valamilyen \(\displaystyle j\) esetén.

Előzmény: [2145] marcius8, 2017-12-03 14:30:36
[2145] marcius82017-12-03 14:30:36

Anélkül, hogy politikát hoznék a fórumba... Magyarországon az országgyűlési mandátumok egy részét úgynevezett listás választások alapján lehet megnyerni. Ez a következőképpen történik: Tegyük fel, hogy van \(\displaystyle n\) mandátum, és a választásokon indulnak a \(\displaystyle P_1\), \(\displaystyle P_2\), \(\displaystyle P_3\),.... pártok. A \(\displaystyle P_1\) párt kap \(\displaystyle x_1\) szavazatot, a \(\displaystyle P_2\) párt kap \(\displaystyle x_2\) szavazatot, a \(\displaystyle P_3\) párt kap \(\displaystyle x_3\) szavazatot,... Legyen \(\displaystyle y_{i,j}=x_i/j\), ahol \(\displaystyle j\) egy \(\displaystyle n\) értékénél nem nagyobb pozitív egész szám. Az így kapott \(\displaystyle y_{i,j}\) hányadosokat csökkenő sorrendbe rendezik, és meghagyják az első \(\displaystyle n\) legnagyobb hányadost, a többit elfelejtik. Ezek után, ha valamelyik \(\displaystyle x_i\) esetén az \(\displaystyle y_{i,j}\) hányados benne van az első \(\displaystyle n\) legnagyobb \(\displaystyle y_{i,j}\) hányados között, akkor a \(\displaystyle P_i\) párt kap egy mandátumot. A mandátumok így történő szétosztása mennyiben tükrözi a választók akaratát?

[2144] marcius82017-12-03 14:06:11

Köszi a megoldást! Én valahogyan sorokkal próbálkoztam, előbb, de inkább utóbb az is meg lesz, akkor azt le is fogom írni. Tisztelettel: Bertalan Zoltán.

Előzmény: [2143] jonas, 2017-11-29 17:06:20
[2143] jonas2017-11-29 17:06:20

Ez egy tanulságos Markov-láncos feladat, érdemes végigszámolni.

Legyen a húzások száma \(\displaystyle T \). Minden \(\displaystyle 0 \le t < T \) egészre nézzük meg, hogy \(\displaystyle t \) húzás után a legközelebbi húzásban hány cetli közül kell húzni, ez legyen \(\displaystyle X_t \), valamint legyen \(\displaystyle Y_t \) azon törpék száma, akik önmagukat húzzák ebben a húzásban. Tehát \(\displaystyle 0 \le t < T \) esetén \(\displaystyle 2 \le X_t \le 7 \). Terjesszük ki az \(\displaystyle X \) sorozatot úgy, hogy \(\displaystyle X_t = 0 \) ha \(\displaystyle T \le t \).

Nyilván \(\displaystyle X_0 = 7 \). A játék szabályai szerint ha \(\displaystyle 0 \le t < T \), akkor \(\displaystyle X_{t+1} = Y_t \), kivéve ha \(\displaystyle Y_t = 1 \), amely esetben \(\displaystyle X_{t+1} = 7 \). Mármost rögzített \(\displaystyle X_t \) mellett \(\displaystyle Y_t \) eloszlása nem függ az előzményektől. Az eloszlást pontosan meg is tudjuk adni: \(\displaystyle P(Y_t = y \mid X_t = x) = \textrm{A008290}(y, x)/x! \). Itt az A008290(y, x) szám x elem azon permutációinak a száma, amiben pontosan y fixpoint van, az OEIS A008290 sorozata szerint. Ez a valószínűség nulla, ha \(\displaystyle x < y \). Íme a feltételes eloszlások táblázata.

\(\displaystyle x =\) 2 3 4 5 6 7
\(\displaystyle P(Y_t=0 \mid X_t=x) =\) 1/2 2/6 9/24 44/120 265/720 1854/5040
\(\displaystyle P(Y_t=1 \mid X_t=x) =\) 0 3/6 8/24 45/120 264/720 1855/5040
\(\displaystyle P(Y_t=2 \mid X_t=x) =\) 1/2 0 6/24 20/120 135/720 924/5040
\(\displaystyle P(Y_t=3 \mid X_t=x) =\) 0 1/6 0 10/120 40/720 315/5040
\(\displaystyle P(Y_t=4 \mid X_t=x) =\) 0 0 1/24 0 15/720 70/5040
\(\displaystyle P(Y_t=5 \mid X_t=x) =\) 0 0 0 1/120 0 21/5040
\(\displaystyle P(Y_t=6 \mid X_t=x) =\) 0 0 0 0 1/720 0
\(\displaystyle P(Y_t=7 \mid X_t=x) =\) 0 0 0 0 0 1/5040

A fentiekből az is következik, hogy ha rögzítjük \(\displaystyle x \)-et ahol \(\displaystyle 1 < x \), akkor az \(\displaystyle X_t = x \) feltétel mellett \(\displaystyle X_{t+1} \) eloszlása független az előzményektől, vagyis az \(\displaystyle X_0, \dots, X_{t-1} \) számoktól (és mellesleg még a húzott nevektől is), és ez a feltételes eloszlás bármely \(\displaystyle t \)-re ugyanaz. Ez azt jelenti, hogy \(\displaystyle X \) egy stacionáris markov lánc. Mivel \(\displaystyle X_{t+1} \) az \(\displaystyle Y_t \) fent leírt függvénye eloszlásból, és \(\displaystyle Y_t \) feltételes eloszlását az előbb kiszámoltuk, ezért \(\displaystyle X_{t+1} \) feltételes eloszlását (az átmenet valószínűségeket) is meg tudjuk adni.

\(\displaystyle x =\) 2 3 4 5 6 7
\(\displaystyle P(X_{t+1}=0 \mid X_t=x) =\) 1/2 2/6 9/24 44/120 265/720 1854/5040
\(\displaystyle P(X_{t+1}=2 \mid X_t=x) =\) 1/2 0 6/24 20/120 135/720 924/5040
\(\displaystyle P(X_{t+1}=3 \mid X_t=x) =\) 0 1/6 0 10/120 40/720 315/5040
\(\displaystyle P(X_{t+1}=4 \mid X_t=x) =\) 0 0 1/24 0 15/720 70/5040
\(\displaystyle P(X_{t+1}=5 \mid X_t=x) =\) 0 0 0 1/120 0 21/5040
\(\displaystyle P(X_{t+1}=6 \mid X_t=x) =\) 0 0 0 0 1/720 0
\(\displaystyle P(X_{t+1}=7 \mid X_t=x) =\) 0 3/6 8/24 45/120 264/720 1856/5040

Most akkor számoljuk ki \(\displaystyle T \) várható értékét. Erre stacionáris Markov-láncoknál a szokásos módszer a következő. Jelölje a maradék lépések számának, vagyis \(\displaystyle (T-t) \)-nek, a várható értékét \(\displaystyle a_x \) az \(\displaystyle X_t = x \) feltétel mellett. A fentiek miatt a maradék lépések számának feltételes eloszlása is független az előzményektől, és \(\displaystyle t \)-től is. Nyilván \(\displaystyle a_0 = 0 \). A többi (\(\displaystyle 2 \le x \le 7\)) esetre felírhatunk egy-egy lineáris egyenletet a fenti átmenet valószínűségek alapján.

\(\displaystyle a_x = 1 + \sum_k P(X_{t+1}=k \mid X_t=x) \cdot a_k \)

Az egyenletrendszer megoldása után, mivel \(\displaystyle X_0 = 7 \), ezért a húzások számának várható értéke \(\displaystyle a_7 \).

A konkrét esetben az egyenletrendszer a következő.

\(\displaystyle (a_2, a_3, a_4, a_5, a_6, a_7) \cdot \begin{pmatrix} 1/2-1 &0 &6/24 &20/120 &135/720 & 924/5040 \\ 0 &1/6-1 &0 &10/120 & 40/720 & 315/5040 \\ 0 &0 &1/24-1 & 0 & 15/720 & 70/5040 \\ 0 &0 &0 & 1/120-1 & 0 & 21/5040 \\ 0 &0 &0 & 0 & 1/720-1 & 0 \\ 0 &3/6 &8/24 &45/120 &264/720 &1856/5040-1 \\ \end{pmatrix} = \)

\(\displaystyle = (-1, -1, -1, -1, -1, -1) \)

Ennek a megoldása

\(\displaystyle (a_2, a_3, a_4, a_5, a_6, a_7) = (9713740330, 13115308479, 11826442740, 12225059935, 12123252750, 12145107135) / 4856870165 \)

Így a sorsolások átlagos száma \(\displaystyle a_7 = 12145107135/4856870165 \), ami körülbelül 2.50.

Előzmény: [2142] marcius8, 2017-11-28 12:15:32
[2142] marcius82017-11-28 12:15:32

Igyekszem pontosabban megfogalmazni az előbbi felvetésemet. Tehát a hét törpe (Szund, Vidor, Hapci, Kuka, ....) mindegyike felírja a saját nevét egy papírra, ezeket a papírokat egy dobozkába teszik, ezután mindegyik törpe pontosan egy papírt húz a dobozkából. Ha elsőre mindenki más nevét húzza, akkor mindenki annak azt ajándékozza meg, akinek a nevét húzta. (Ennek lesz "1/e" a valószínűsége.) Ebben az esetben a "ki kit ajándékoz meg" sorsolás eredményes, és ekkor a sorsolásnak vége. Akkor van baj, ha van olyan törpe, aki a saját nevét húzta, ekkor a sorsolást a következő szabályok szerint ismétlik meg:

- Ha több, mint 1 törpe húzta a saját nevét valamelyik megismételt sorsolás esetén, akkor ezek a törpék egymás közt újra megismétlik a sorsolást.

- Ha pontosan 1 törpe húzta a nevét, akkor a sorsolást az összes törpe részvételével megismétlik, mert ez így igazságos.

- Ha valamelyik megismételt sorsolás esetén már nincs olyan törpe, aki a saját nevét húzta, akkor a sorsolás eredményes, a sorsolásnak vége, és ekkor minden törpe azt ajándékozza meg, akinek a nevét húzta.

Ekkor várhatóan hány sorsolás után lesz az, hogy minden törpe más törpének a nevét húzta?

Előzmény: [2141] marcius8, 2017-11-28 09:31:52
[2141] marcius82017-11-28 09:31:52

Nemsokára itt a karácsony. A hét törpe is készül egymás megajándékozására. Ezért a hét törpe mindegyike felírja a saját nevét egy kis papírra, a papírokat összehajtva beteszik egy dobozkába. Ezután a hét törpe mindegyike húz a dobozkából pontosan egy papírt, és minden törpe annak ad ajándékot, akinek a nevét húzta. (Ebben még semmi különös nincs.) De előfordulhat, hogy lesznek olyan törpék, akik a saját nevüket húzzák (ennek durván "1/e" a valószínűsége, ami nem elhanyagolható), ezek a törpék egymás közt újra megismétlik ezt a sorsolást. Ha megint lesznek ilyen törpék, akkor ezek a törpék egymás közt újra megismétlik ezt a sorsolást.... Végül előfordulhat az is, hogy az első sorsoláskor, vagy akármelyik sorsoláskor pontosan egy törpe húzza a saját nevét, ekkor a sorsolást mind a hét törpe újra kezdi. Várhatóan hány sorsolásra kerül sor?

[2140] marcius82017-10-08 13:47:42

Nagyon jók a #2138 és #2137 bizonyítások! A 90°-os háromszögre érvényes Pitagorasz-tétel területátdarabolós bizonyításánál a terület fogalma triviálisnak tűnik. De ezek a bizonyítások arra is rávilágítanak, hogy a terület fogalma egyáltalán nem olyan triviális!!!

[2139] marcius82017-10-05 08:11:06

JÉÉÉ!!!!!! Köszi a bizonyításokat FM! Hálám örökké üldözni fog!!!!

[2138] Fálesz Mihály2017-10-04 21:46:49

Átdarabolás 60 fokos háromszöggel:

Előzmény: [2137] Fálesz Mihály, 2017-10-04 21:03:25
[2137] Fálesz Mihály2017-10-04 21:03:25

Egy lehetséges átdarabolás a 120 fokos háromszögre:

Előzmény: [2135] marcius8, 2017-10-04 19:21:54
[2136] Fálesz Mihály2017-10-04 19:58:00

A 60 fokos esetben, sőt, a koszinusz-tétel általános esetére is működik a 2132-beli módszer: az \(\displaystyle AB\) egyenesen felvesszük azokat az \(\displaystyle X\) és \(\displaystyle Y\) pontokat, amelyekre \(\displaystyle ABC\triangle \sim ACY\triangle \sim CBX\triangle\).

Előzmény: [2135] marcius8, 2017-10-04 19:21:54
[2135] marcius82017-10-04 19:21:54

A #2134 és a #2132 bizonyítások nagyon jók, nagyon szépen köszönöm! A #2132 bizonyítás nagyon tetszik, mert analógiát teremt a derékszögű háromszög és a 120°-os háromszög között!!! Magam részéről egy terület-átdarabolós bizonyítást próbáltam keresni, de ez még eddig nem sikerült. (A derékszögű háromszögre érvényes Pitagorasz-tétel legismertebb bizonyítása úgy történik, hogy egy négyzetet kétféleképpen darabolnak fel. Euklidesz is terület-átdarabolással bizonyítja a Pitagorasz-tételt.) Szóval, ha még valaki tudna a 120°-os háromszögre vagy a 60°-os háromszögre érvényes összefüggésre egy terület-átdarabolós bizonyítást annak is nagyon hálás lennék!!!!

[2134] Lpont2017-10-04 15:47:01

Kedves Zoltán!

Egy lehetséges megoldás a 60 fokos háromszögre:

(1) Ha ABC egyenlő szárú, akkor szabályos is egyúttal, az állítás triviálisan igaz.

(2) Ha az oldalak páronként különböznek, akkor nyilván van kisebb és nagyobb szög is 60-nál, legyen pl. a>c>b.

Mérjük fel b oldal hosszát rendre C-ből B felé a CB szakaszra, A-ból B-felé és vele ellentétes irányba is az az AB egyesre, kapjuk a D,E,F pontokat.

A származtatás miatt ACD szabályos, AFC és ADE egyenlő szárú háromszög. Ha A-nál lévő szög alfa, akkor F-nél alfa/2 és DAE szög alfa-60, ezért ADE szög 120-alfa/2. CDEF négyszög húrnégyszög, hiszen F-nél és D-nél lévő szögeinek összege 180.

B pontnak a húrnégyszög körülírt k körére vonatkozó hatványa: BE*BF=BD*BC, azaz (c-b)*(c+b)=(a-b)*a, ahonnan zárójelfelbontás és rendezés után a bizonyítandó állítást kapjuk.

Előzmény: [2131] marcius8, 2017-10-03 11:21:13
[2133] marcius82017-10-04 11:24:30

WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW! WOW!

Előzmény: [2132] Fálesz Mihály, 2017-10-04 06:11:28
[2132] Fálesz Mihály2017-10-04 06:11:28

Szerintem ez jó iskolai gyakorlat lehetne. Amikor a befogó- és a magasságtételt tanítjuk, majd a befogótételből bebizonyítjuk a Pitagorasz-tételt, fel lehet adni, hogy ezek mintájára csinálják meg a 120 fokos esetet.

A bizonyítás alapja az önhasonlóság; ha a derékszögű háromszöget kettéosztjuk az átfogóhoz tartozó magassággal, a két rész hasonló lesz az eredeti háromszöghöz.

Ha a háromszög nem derékszögű, hanem van egy mondjuk 120 fokos szöge, akkor a magasság helyett belerajzolhatunk egy szabályos háromszöget. Az ábra betűzésével \(\displaystyle ABC\triangle \sim ACT\triangle \sim CBU\triangle\), és persze \(\displaystyle c=x+y+z\). A hasonlóságokból

\(\displaystyle \frac{a}{c}=\frac{y}{a}=\frac{z}{b}, \quad \frac{b}{c}=\frac{x}{b}=\frac{z}{a} \quad\text{és}\quad \frac{a}{b}=\frac{y}{z}=\frac{z}{x}.\)

Ezeket átszorozva,

\(\displaystyle a^2 = cy, \quad b^2=cx, \quad ab=cz, \quad z^2=xy. \)

Az első kettő megfelel a befogótételnek, a harmadik a terület kétféle felírása, a negyedik a magasságtétel megfelelője. Az első hármat összeadva,

\(\displaystyle a^2+ab+b^2 = c(x+y+z) = c^2. \)

Előzmény: [2131] marcius8, 2017-10-03 11:21:13
[2131] marcius82017-10-03 11:21:13

Esetleg, ha valaki az előző hozzászólásomban említett, a 60°-os háromszögre és a 120°-os háromszögre vonatkozó összefüggéseket be tudná bizonyítani nekem a 90°-os háromszögre vonatkozó Pitagorasz-tétel felhasználása nélkül, annak nagyon hálás lennék. Vajon a Pitagorasz-tétel bizonyításához hasonlóan be lehet bizonyítani a 60°-os háromszögre és a 120°-os háromszögre vonatkozó összefüggéseket?

[2130] marcius82017-09-29 10:03:24

Geometriában az egyik legfontosabb tétel a Pitagorasz-tétel, amely szerint ha egy derékszögű háromszög befogói \(\displaystyle a\) és \(\displaystyle b\), átfogója \(\displaystyle c\), akkor a következő összefüggés teljesül:

\(\displaystyle a^2+b^2=c^2\)

Ennek a tételnek a felhasználásával a következő összefüggések vezethetőek le:

Legyenek egy 60°-os háromszögnek a 60° melletti oldalai (nevezzük befogóknak) \(\displaystyle a\) és \(\displaystyle b\), a 60°-os szöggel szemközti oldala (nevezzük átfogónak) \(\displaystyle c\). Ekkor a következő összefüggés teljesül (60°-os háromszögre érvényes Pitagorasz-tétel):

\(\displaystyle a^2-ab+b^2=c^2\)

Legyenek egy 120°-os háromszögnek a 120° melletti oldalai (nevezzük befogóknak) \(\displaystyle a\) és \(\displaystyle b\), a 120°-os szöggel szemközti oldala (nevezzük átfogónak) \(\displaystyle c\). Ekkor a következő összefüggés teljesül (120°-os háromszögre érvényes Pitagorasz-tétel):

\(\displaystyle a^2+ab+b^2=c^2\)

A probléma a következő: Először megtanuljuk a derékszögű háromszögre a Pitagorasz-tételt, majd csak ennek felhasználásával bizonyítjuk a 60°-os háromszögre érvényes Pitagorasz-tételt, és a 120°-os háromszögre érvényes Pitagorasz-tételt. De mi lenne, ha először a 60°-os háromszögre érvényes Pitagorasz-tételt tanulnánk, és csak ennek felhasználásával hogyan kellene bizonyítani a másik két Pitagorasz-tételt? Vagy mi lenne, ha először a 120°-os háromszögre érvényes Pitagorasz-tételt tanulnánk, és csak ennek felhasználásával hogyan kellene bizonyítani a másik két Pitagorasz-tételt? Várom mindenkinek megtisztelő válaszát: Bertalan Zoltán.

[2129] marcius82017-08-30 00:02:02

Ok, teljesen igaz a megjegyzés. Akkor úgy pontosítok, hogy a mérkőzésenkénti gólok száma 3 várható értékű Poisson-eloszlást követ úgy, hogy a mérkőzés bármely viszgált időszaka alatt esett gólok száma is Poisson eloszlású. Ekkor feltehető, hogy a vizsgált időszak alatti gólok számának várható értéke úgy aránylik a teljes mérkőzés alatti gólok számának várható értékéhez, mint a vizsgált időszak hossza a teljes mérkőzés idejéhez.

Előzmény: [2128] jonas, 2017-08-29 22:33:46
[2128] jonas2017-08-29 22:33:46

Szerintem ahhoz, hogy ezt meg lehessen mondani, nem elég annyi megkötés a modellre, hogy “A mérkőzésenkénti gólok száma Poisson-eloszlást követ”. Ha például minden jelenlegi mérkőzésnek a vége felé könnyebb gólt rúgni, mint az elején, akkor az új szabály sokszor fog hosszabbítást és több gólt eredményezni, de ettől még igaz lehet a feltételed.

Előzmény: [2127] marcius8, 2017-08-29 18:16:54
[2127] marcius82017-08-29 18:16:54

Tegyük fel, hogy minden futballmérkőzés pontosan 90 percig tart, és minden mérkőzésen átlagosan 3 gól esik. A mérkőzésenkénti gólok száma Poisson-eloszlást követ. Most nagy hirtelen a nagyokos szabályalkotók összegyűlnek, és kitalálják azt az új szabályt, hogy ha akármelyik mérkőzésen egy gól esik, akkor a mérkőzés nem ér véget automatikusan 90 perc után, hanem a gól után pontosan 10 percig még tart a mérkőzés, azaz 10 perc hosszabbítás következik. Nyilván, ha az utolsó gól a mérkőzés 80.-ik perce előtt esik, akkor a mérkőzés automatikusan véget ér 90 perc után. Milyen eloszlást követ ekkor a mérkőzések időtartalma? Vigyázat, ha a mérkőzés hosszabbításában is gól születik, akkor a gól után a 10 perc hosszabbítás mérése automatikusan újra kezdődik.

[2126] Róbert Gida2017-06-11 22:24:03

Csak le kell fordítani a kérdésedet angolra, és jó esetben, mint most is (3. találat a google-on) meg lehet találni a választ: https://math.stackexchange.com/questions/264407/entire-function-having-simple-zero-at-the-gaussian-integers

Előzmény: [2125] marcius8, 2017-06-10 22:00:49
[2125] marcius82017-06-10 22:00:49

Keresek olyan mindenhol differenciálható komplex függvényt, amelynek az összes gauss-egész a zérushelye, de csak a gauss-egészek a zérushelyei. Ha lehet, a függvényt az ismert elemi függvények segítségével és a négy alapművelet véges sokszori alkalmazásával írjuk fel. Előre is köszönöm mindenkinek a segítségét!

[2124] yield2017-03-04 07:56:41

Mind a két megjegyzésed jogos, köszönöm!

1. Az óramutató képletem nem volt jó: 30*(t/30) helyett 30*(t/60) a jó. Így megoldva az egyenleteket kijön a 12/11 óra.

2. A külőnbség abszolut értéke egy órán belül (ha t: 0 és 60 között) kétszer lesz 110. Pontosítani kell a feladatkiírást

Előzmény: [2123] csábos, 2017-03-03 20:23:06

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]