Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]  

Szeretnél hozzászólni? Jelentkezz be.
[261] sakkmath2008-01-13 16:18:31

Kedves nadorp!

Előzmény: [258] nadorp, 2008-01-08 11:29:29
[260] epsilon2008-01-12 08:58:36

Helló nadorp! A feladat 5 vagy több tag esetén is igaznak tűnik, de a 4-re adott bizonyítást sok eset letárgyalása nélkül nem igazán látom átültetni pl 5 tagra :-( Van valami ötleted? Üdv: epsilon

Előzmény: [258] nadorp, 2008-01-08 11:29:29
[259] epsilon2008-01-08 15:02:50

Helló! Köszi, jó ötlet volt az, hogy azt az 1 törtet ami nem illett bele a Cebisev egyenlőtlenségbe (a rendezés monotonításába), 2 esetbe véve tárgyaltad, így valóban teljesen logikus, szép megoldás! Üdv: epsilon

[258] nadorp2008-01-08 11:29:29

Mindkét oldalt elosztva a nem 0 abcd-vel,a feladat ekvivalens a következővel:

\frac{bc}d+\frac{cd}a+\frac{ad}b+\frac{ab}c\geq a+b+c+d.

Két esetet vizsgálunk meg

1.eset: bc\leqad. Ekkor a Csebisev egyenlőtlenség és \frac1d\leq\frac1b miatt

\frac{bc}d+\frac{ad}b\geq\frac{bc}b+\frac{ad}d=c+a

és hasolóan cd\geqab és \frac1a\geq\frac1c miatt

\frac{cd}a+\frac{ab}c\geq\frac{cd}c+\frac{ab}a=d+b

2.eset: bc>ad. Ekkor bc\leqcd és \frac1d\leq\frac1a miatt

\frac{bc}d+\frac{cd}a\geq\frac{bc}a+\frac{cd}d=\frac{bc}a+c

és hasolóan ad\geqab és \frac1b\geq\frac1c miatt

\frac{ad}b+\frac{ab}c\geq\frac{ad}c+\frac{ab}b=\frac{ad}b+a

Összeadva a fenti két egyenlőtlenséget

\frac{bc}a+c+\frac{ad}b+a\geq\frac{bc}b+\frac{ad}a+a+c=c+d+c+a\geq a+b+c+d

Előzmény: [257] epsilon, 2008-01-07 13:40:07
[257] epsilon2008-01-07 13:40:07

B.Ú.É.K. Mindenkinek! Megint van egy szimpatiklus kis feladat, a Cebisev egyenlőtlenségre gyanakszom, de nem tudom a feltételeket hozzá igazítani: Ha a, b, c, d pozitív és növekvő számok ebben a sorrendben, akkor igaz a következő egenlőtlenség:

[256] Róbert Gida2007-12-20 10:20:47

D. O. Skljarszkij-N. N. Csencov-I. M. Jaglom Válogatott feladatok és tételek az elemi matematika köréből című könyvben ez 231.a feladata. Megoldás a könyv végén.

Előzmény: [255] PAL, 2007-12-19 23:15:02
[255] PAL2007-12-19 23:15:02

Sziasztok! A segítségeteket szeretném kérni a (2)-es állítás bizonyításához. Az (1)-es egyenlőségre, mely a másodikhoz "külsőre" hasonló típusú, szép és "középiskolás fejjel" is könnyen érthető, 5-7 soros bizonyítási módszert találtam Pogáts Ferenc: Trigonometria(1973) c. könyvének 179. oldalán. Ezt azért írom le, mert hasonlóan frappáns bizonyítást keresek az állítás(2)-höz is. Tehát azonos algebrai átalakításokkal, lemmák alkalmazása nélkül, egy rövid, 5-6 soros bizonyítás lenne számomra praktikusan megfelelő (úgy tudom, hogy elvileg van ilyen, de nekem sajnos nem sikerült összehozni. Még talán a teljes-indukciós lenne a legjobb). Ha valaki tud ilyet - vagy bármilyet - hálás lennék érte, ha felrakná ide, vagy e-mailben elküldené nekem. Köszönöm.

[254] epsilon2007-12-04 19:36:26

Pontoabban ez érdekelne: adott n mellet, az a,b,c,d,e,f,g együthatókra milyen feltételek mellett kompatibilis vagy inkompatibilis az egyenletrendszer, amikor kompatibilis mikor haározott, mikor határozatlan, és ezen esetekben a megoldások megkeresése is érdekel. Látszatra banális, de nagyon szerteágazó a sok eset.

[253] epsilon2007-12-04 18:15:45

Helló! Köszi, nem ez, lehet, hogy nem voltam elég világos az alábbi egyenletrendszerről van szó, teljesen elemi módon, mikor hány megoldás van:

[252] nadorp2007-12-04 13:32:01

Úgy látom, ez a Kínai-maradéktétel

http://mathworld.wolfram.com/ChineseRemainderTheorem.html

Előzmény: [251] epsilon, 2007-12-04 12:08:09
[251] epsilon2007-12-04 12:08:09

Tisztelt Fórumtagok! megint Én jelentkezem kérdéssel, régóta nézelődöm ezen a téren, de segítségre lenne szükségem: Tudna-e Valaki mondani neten elérhető forrásanyagot (magyar, angol vagy francia, de más latin nyelvcsaládban sem rossz) arról, hogy miként lehet megoldani modulo n-ben 2 ismeretlenes 2 egyenletből álló egyenletrendszert. Mert van amikor megy a kifejezési módszerrel, van amikor megy a kiküszöüblés módszer, van amikor megy a Cramer-szabálal, de van amikor csak "okoskodással" lehet megoldani. A megoldhatósági feltételek, esetek rendszerezését szeretném tudni, hogy miként lehet tárgyalni. Ugyanakkor érdekelne mindez 3 ismeretlenes, 3 egyenletből álló modulo n egyenletrendszerre is, természetesen mindenesetben csak lineáris egyenletrendszerre gondoltam Bárminemű segítséget előre is köszönök! Üdvözlettel: epsilon

[250] epsilon2007-11-25 10:24:55

Kedves Lajos! Köszi szépen, mert azt hittem, tévúton járok, ugyanis mielőtt ide kiírtam volna a feladatot, azelőtt az [f(y)-f(x)]/(y-x) arányt vizsgálva, pontosan idáig jutottam el mint amit Te írsz (persze y-x nélkül), és azt hittem, hogy zsákutca. De mivel Te is ezt követted, innen kihámoztam, hogy végűl keresztbe szorozva, TAGPÁRONKÉNT összehasonlítva elegendő ha x és y-ra teljesüljön ilyen feltétel: a-t>=t-b ami éppen a szóban forgó intervallumba való tartozást jelenti. Üdv: epsilon

[249] Lóczi Lajos2007-11-24 20:55:51

Felírod, hogy f(y)-f(x). A hasonló gyök különbségét egymás mellé csoportosítod, és a "konjugálttal" (=gyökök összegével) bővítesz. Ezt kapod:

-\frac{-x + y}{{\sqrt{b - x}} + {\sqrt{b - y}}}  + 
  \frac{-x + y}{{\sqrt{-a + x}} + {\sqrt{-a + y}}},

erről pedig látszik, hogy pozitív, ha x<y és a\lex\le(a+b)/2 és a\ley\le(a+b)/2, mert a jobb oldali nevezők páronként kisebbek a bal oldaliaknál.

Előzmény: [248] epsilon, 2007-11-24 15:54:37
[248] epsilon2007-11-24 15:54:37

Helló! Valaki tudna-e segíteni abban, hogy a következő feladatot NE a matematikai analízis módszerével oldja meg! Előre is köszönöm a segítséget!

[247] Bubóka2007-11-02 13:08:11

Üdv Mindenkinek!

Segítséget szeretnék kérni a következő feladathoz. Aki esetleg tud, megköszönném!!

Bizonyítsuk be, hogy az alábbi háromszögszerkesztési feladatok nem szerkeszthetők euklidészi értelemben! A harmadfokú problémáknál vizsgáljuk, hogy megoldható-e szögharmadoló eszközzel.

1. (a, ha, wb ) = ( p/2, 1, 2 )

2. (a, ha, wb ) = ( 1, 1, 1 )

Nem tudom mennyire egyezményesek ezek a jelek, a w - a szögfelezőt, h- a magasságot jelentené.

[246] Róbert Gida2007-11-01 23:16:08

Nem. Csak megnéztem néhány speciális esetet és be is tudtam bizonyítani. Ezek szerint, ha p=4*k+1 alakú prím, akkor

f(p)=\frac {p^{2}+2}{3}

, ahol f(p) az a feladatban definiált összeg. Kis számelmélet kell hozzá.

Előzmény: [245] jonas, 2007-11-01 22:47:51
[245] jonas2007-11-01 22:47:51

Igen? Kifejtenéd ezt bővebben? Abból a könyvből szeded, amire az OEIS bejegyzés hivatkozik?

Előzmény: [244] Róbert Gida, 2007-11-01 22:21:07
[244] Róbert Gida2007-11-01 22:21:07

Speciális esetekben viszont van explicit képlet: ha n=4*k+1 alakú prím, akkor például van!

Előzmény: [243] jonas, 2007-11-01 21:27:22
[243] jonas2007-11-01 21:27:22

Az ilyenre a standard procedúra a következő. Kiszámolod kis n-ekre. Nekem ez jött ki:

0,1,2,4,7,9,13,18,24,29,34,42,51,57,67,78,90,97,110,122,137,149,163,180,198,211,226,246,265,281

Ezt megkeresed a Sloane-ben (vesszővel elválasztva kell beírni).

Az eredményekből kiválasztod a megfelelő sorozatot, és megsejted, hogy az az eredmény. Utána bebizonyítod.

Ebben az esetben elég sok tagunk van, hogy csak egy sorozatot találjunk: A014817, és annak a definíciója nagyon hasonlít a képletedhez (csak még a 0-t is hozzáveszi).

Sajnos explicit képletet nem ad. Ezért azt lehet sejteni, hogy vagy nincs explicit képlet, vagy nehéz megtalálni.

Előzmény: [242] SÁkos, 2007-11-01 18:39:08
[242] SÁkos2007-11-01 18:39:08

bocsánat, helyesen \sum_{i=1}^n \bigg[\frac{i^2}n\bigg]

Előzmény: [241] SÁkos, 2007-11-01 18:11:32
[241] SÁkos2007-11-01 18:11:32

Üdv mindenkinek!

A következőt szeretném kérdezni:

Létezik explicit alakja \sum_{i=1}^n \frac{i^2}n-nek? és ha igen, mi az?

[240] Daniel2007-10-30 22:49:37

Sziasztok! Az lenne a kérdésem, hogy a KöMaL CD-n található 1735-ös feladat megoldásában (1972. október, 72. oldal) mit jelent a Ptolemaiosz-Dürer-féle eljárás?

[239] Lóczi Lajos2007-10-23 23:50:17

https://www.cs.tcd.ie/publications/tech-reports/reports.06/TCD-CS-2006-46.pdf

Előzmény: [238] arnoldino, 2007-10-23 22:26:36
[238] arnoldino2007-10-23 22:26:36

udv mindenkinek

van valaki aki tudna nekem segiteni dualis kvaterniokkal kapcsolatban?

[237] Lengyel_Ferenc12007-10-14 10:48:48

Üdvözletem!

Eszembe jutott egy feladat az úgynevezett Levi-sejtés kapcsán, és az 5-ös szám vizsgálata közben. A Levi-sejtés azt mondja ki, hogy minden páratlan szám felosztható olyan három prímszámra, amelyek közül kettő egyenlő, egy pedig nagyobb a másik kettőnél. Vegyük azokat a prímeket, amelyeknek, ha a páros felét elosztjuk kettővel szintén prímet kapunk. Ilyen számok például:

(7 = 3+4) (4/2 = 2), (11 = 5+6) (6/2 = 3)

Most adjuk hozzá ezekhez a számokhoz saját páros felüket.

7+4 = 11, 11+6 = 17

Láthatjuk, hogy szintén prímeket kaptunk. Ilyen prímek még a 19, 29 vagy a 43 is. Vagyis olyan prímek, amelyeknél van olyan kisebb prím, amelyiknek ha a páros felét elosztjuk kettővel szintén prímet kapunk, és ha ezt a páros felet hozzáadjuk saját magához, akkor megkapjuk ezeket a prímeket. A feladat tehát az lenne, hogy bizonyítsuk be: végtelen sok ilyen prím van. Én sajnos nem tudom bebizonyítani. Ha az interneten megvan valahol a bizonyítás és megmutatnátok annak is örülnék. Segítséget előre is köszönöm.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]