Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]  

Szeretnél hozzászólni? Jelentkezz be.
[295] komalboy2008-02-18 16:38:17

Egy kis verseny-feladat... : Egy vállalat a hozzá jelentkezőket egy 25 pontból álló teszttel vizsgálja. A legfrissebben meghiretett állásra 20 fő jelentkezett, kinek a teszteredményei mind különbözőek, semelyik kettő sem azonos teljesen. Mutassuk meg, hogy kiválasztható 19 tesztkérdés úgy, hogy a 20 teszt közül bármely kettő között lesz eltérés ezen 19 kérdés alapján is.

[294] Kós Géza2008-02-16 16:24:22

Most már jó.

Előzmény: [293] DömötörKrisztián, 2008-02-15 18:32:26
[293] DömötörKrisztián2008-02-15 18:32:26

tudna valaki segíteni? másnál sem müködik rendesen a teX?lehet h én vagyok a hülye, de: t=\frac{c^2}{8} ezt jól kiirja t=\frac{c}{8} ezt meg nem szerintetek?

[292] Sirpi2008-02-15 11:50:48

Kicsit kavar van itt... Egyrészt "a két átlóval bezárt szög" helyett nem azt akartad írni, hogy "a két átló bezárt szöge"? Mert ha a két átló bezárt szöge 60o, akkor a koszinusztételből és abból, hogy az átlók felezik egymást, következik, hogy:

a2=(e/2)2+(f/2)2-2.e/2.f/2.cos 60o

b2=(e/2)2+(f/2)2-2.e/2.f/2.cos 120o

Vagyis:

a = 1/2 \cdot \sqrt {e^2 + f^2 - ef}

b = 1/2 \cdot \sqrt {e^2 + f^2 + ef}

Amúgy pedig a köv. hozzászólásban említett "átlók négyetösszege egyenlő az oldalak négyzetösszegével" helyesen úgy hangzik, hogy e2+f2=2a2+2b2

Előzmény: [290] gele_viki, 2008-02-14 20:15:54
[291] nehajolehet2008-02-15 11:07:32

Paralelogrammánál az átlók hosszának négyzetösszege megegyezik az oldalak hosszának négyzetösszegével. Tehát e=sin"alfa", f=cosß, a=sin2"alfa", a=?, b=? kérdésre a válasz: e ad 2 + f ad 2 = a ad 2 + b ad 2, ezután a többi csak számolás. Szerintem.

Előzmény: [290] gele_viki, 2008-02-14 20:15:54
[290] gele_viki2008-02-14 20:15:54

tudna nekem segíteni valaki?

Van egy paralelogramma, aminek a hosszabbik átlója ,f', a rövidebbik ,e'. A két átlóval bezárt szög 60 fok. e=sin"alfa", f=cosß, a=sin2"alfa", a=?, b=? Bocsi az alfáért de nem tudom hol van a billentyűn :) Előre is köszönöm!

[289] Pardeller2008-02-14 17:23:55

Nagyon köszönöm!

Előzmény: [288] nadorp, 2008-02-14 17:12:39
[288] nadorp2008-02-14 17:12:39

Ha x2+ax+b=y2, akkor

4x2+4ax+a2+4b=4y2+a2

(2x+a)2-4y2=a2-4b

(2x+a-2y)(2x+a+2y)=a2-4b

Ha a2-4b\neq0, akkor csak véges sok két tényezős felbontása létezik, tehát az eredeti kifejezés nem lenne végtelen sok x helyen négyzetszám. Tehát a2-4b=0, azaz

x^2+ax+b=\left(x+\frac a2\right)^2

Előzmény: [286] Pardeller, 2008-02-13 18:54:43
[287] nemtommegoldani2008-02-13 21:38:49

Kedves Python! Nagyon köszönöm a segítséget, és a nagyon gyors választ!

[286] Pardeller2008-02-13 18:54:43

Tegyük fel, hogy x2+ax+b végtelen sok egész x-re négyzetszám (a és b is egész). Bizonyítsuk be, hogy ekkor a kifejezés egy elsőfokú polinom négyzete. Matek szakkör, Pell-féle egyenletek volt a témakör, de más természetű megoldásokat is szívesen fogadok :) Előre is köszönöm.

[285] Python2008-02-13 18:43:38

25.34.73.1111 pozitív osztóinak a száma az ismert képlet alapján (5+1)(4+1)(3+1)(11+1). (prímkitevő+1 alakú tényezők szorzata minden prímre a prímfelbontásból; ha a szám egy p prímnek az a-adik hatványával osztható, a+1-edikkel nem, akkor p kitevője a+1 féle (0, 1, 2, ..., a) lehet egy osztójában.)

Előzmény: [283] nemtommegoldani, 2008-02-13 18:35:00
[284] Python2008-02-13 18:38:01

Tegyük fel, hogy p prím, és p|n+1, p|n2+3n+3! Ekkor p|3n+3, így p|n2, de ekkor p|n, és így p|n+1 miatt p|1 de ez ellentmondás, így n+1 és n2+3n+3 relatív prímek.

Előzmény: [282] nemtommegoldani, 2008-02-13 18:15:16
[283] nemtommegoldani2008-02-13 18:35:00

Az előbbi hozzászólásomhoz még egy feladatot elfelejtettem: Határozd meg a 2 az ötödiken*3a negyediken*7 a harmadikon*11 a tizenegyediken pozitív osztóinak számát! Köszönöm szépen!

[282] nemtommegoldani2008-02-13 18:15:16

Újabb feladattal bombázok! Mutassa meg, hogy minden n term. szám esetén az n négyzet+3n+3 és n+1 relatív prímek! Ismét csak köszönetet tudok mondani annak a kedves embernek, aki ezt megfejti nekem.

[281] nadorp2008-02-11 22:26:25

Természetesen igazad van, de a célom pont az volt, amit Rizsesz leírt, ti. az ax+by=c diofantikus egyenletet pont így oldjuk meg euklideszi algoritmussal. Én csak egyszerűen behelyettesítettem az általános képletekbe a konkrét értékeket. Szerintem a példát pont azért adták fel, hogy numerikusan is megértsék a bizonyítást, ezért volt az én levezetésem annyira "szájbarágós".

Előzmény: [279] BohnerGéza, 2008-02-11 16:50:13
[280] rizsesz2008-02-11 16:58:27

Itt pont az volt a lényeg, hogy az általános módszert végigvezessük ezen a konkrét eseten, ami akkor is működik, ha az ax+by=c egyenletben a és b relatív prímek. Itt egy olyan esettel álltunk szemben, ahol nem voltak azok, de maga a módszer természetesen ilyenkor is működőképes.

Ha az ember csak meg akarja oldani, és látja, hogy egyszerű, akkor persze fejben kitalálja a megoldást.

Előzmény: [279] BohnerGéza, 2008-02-11 16:50:13
[279] BohnerGéza2008-02-11 16:50:13

Ha eleve egyszerűsítem 7-tel?!

Előzmény: [278] nadorp, 2008-02-11 13:18:54
[278] nadorp2008-02-11 13:18:54

98=77.1+21

77=21.3+14

21=14.1+7

14=7.2+0

Innen a lnko=7.

Az első egyeneletből

21=98-77.1

A második egyeneletből felhasználva az elsőt

14=77-21.3=77-(98-77.1).3=77.4-98.3.

Tehát egy megoldás az x=-3 y=-4, azaz az általános megoldás

x=-3+\frac{77}7t=-3+11t

y=-4+\frac{98}7t=-4+14t

Előzmény: [277] nemtommegoldani, 2008-02-10 22:43:59
[277] nemtommegoldani2008-02-10 22:43:59

Oldjuk meg a következő diofantikus egyenletet:98x-77y=14 a megadott módon: euklideszi algoritmussal adja meg lnko-t, majd ennek a segítségével adja meg az összes megoldást! A feladatot már megoldottam más módszerrel, de az euklideszi algor. segítségével nem uazt az eredményt kaptam, mint a másiknál. Az jó megoldás, de nem fogadják el, mert az euklideszi algoritmust kellene hozzá használni. Mit téveszthettem az euklideszi algoritmusnál? Köszönöm a választ.

[276] lorantfy2008-02-01 19:22:54

Szia Csocsi! Most kaptam kölcsön egy hasonló játékot, de ez csak 6 db-os. Szerintem azért segíteni fog Neked, ha jársz még erre.

Előzmény: [179] csocsi, 2007-03-22 19:53:56
[275] epsilon2008-01-17 06:50:31

Igen, olvasom, az valóban az, de ami a [264] nadorp hozzászólás első felében van, az nem pont az, csak annak a segítségével (olyan típusú egyenlőtlenségek összegezésével) bizonyítják a Cebisev egyenlőtlenséget.

[274] sakkmath2008-01-16 16:47:31

Az angol szakirodalomban így hívják: Chebyshev Sum Inequality. Klikk ide.

Előzmény: [269] epsilon, 2008-01-16 12:31:07
[273] epsilon2008-01-16 14:26:36

Bocs: ehelyett a1×b1+a2×b2>=a1×b2+a2×b2 ez kell a1×b1+a2×b2>=a1×b2+a2×b1

[272] epsilon2008-01-16 14:25:10

OK, valóban így is lehet nézni, de akkor a rendezési tételt valójában nagyágyúnak használjuk hiszen n=2 esetén b2>=b1 és a2>=a1 feltételek mellett egyetlen nemtriviális permutációra van bizonyítanivaló egyenlőtlenség: a1×b1+a2×b2>=a1×b2+a2×b2 ami átírva (b2-b1)×(a2-a1)>=0 és vágül nincs szükség a nagyágyúra, mert végső soron csak az ai illetve bi rendezését vesszük figyelembe, de vehetjük úgy is, hogy az ötletet a rendezési tétel adta. Üdv: epsilon

[271] nadorp2008-01-16 13:04:13

Ha jobban megnézed, minden lépésben használtam n=2-re.

\frac{xy}z+\frac{pq}r\geq\frac{xy}r+\frac{pq}z, ha xy\leqpq és z>r

Előzmény: [270] epsilon, 2008-01-16 12:35:53

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]