[343] epsilon | 2008-03-05 06:40:40 |
Igen érdekes elgondolkodni a konvexitás fogalmának a defieálásán, hiszen mint az érintős meghatározás, mint az, hogy f"(x) ne legyen negatív nem igazán fogadható el ezek szerint a konvexitás értelmezésének, mert a derivált belekeverése nem "fair" tehát legtisztább a húrral defineálni és úgy tanítani, noha sok szakkönyvben nem éppen így teszik.
|
Előzmény: [340] Lóczi Lajos, 2008-03-04 22:07:31 |
|
[342] epsilon | 2008-03-05 06:37:26 |
Kedves Lajos! Örvendek, hogy megerősíted ezt a megoldási lehetőséget, a 308-as hozzászólásnál Én is ezt próbáltam bemutatni, Én ugyan a Stolz-Cezaro tétel 3. következménbyeként ismerem, ugyanis azzal levezethető, de Cauchy-D'Alambert tételnek forgalmazzák a Sorok elméletében, a lényeg az lenne, hogy: 1) Írtad, hogy "megmutatjuk", hogy a limesz a végén gyök e, 2) Ha jól akartam, a 308-nál ugyanezt végeztem, de a parciális határértékretérés gyanúja állt fenn, ott meg a limesz e-nek jött ki. Van valami kiegészítésed, hogyan is jön ki pontosan a gyök e, (vagyis a "megmutatjuk" hogyanja) meg miért van ellentmondásba az eredmény a 308-cal, mert nagyon tetszik ez a megoldásod, hiszen a teszt középiskolásoknak szól, így nagyágyúval rálőni nem fair, amit mutattam szerintem az is elég hosszadalmas, szerintem ilyesfélén ahogyan írtad egészen plauzíbilis! Üdv: epsilon
|
|
[341] Lóczi Lajos | 2008-03-04 22:29:48 |
Még egyszer hadd térjek vissza a problémára egy utólagos elemzés erejéig, más kiindulással és kevésbé explicit érveléssel, a Stirling-re való hivatkozás nélkül.
A hányados- és gyökkritérium témaköréből ismert a következő egyenlőtlenséglánc:
(Ez a lánc egyébként azt mondja, hogy a gyökkritérium erősebb a hányadoskritériumnál.)
A megadott rekurziót az en=(1+1/n)n és jelölésekkel így írhatjuk át:
Mivel itt a jobb oldal liminf-je és limsup-ja egyaránt e, a fentiekből rögtön adódik, hogy létezik
és e-vel egyenlő. Innen a továbbhaladás már hasonló (de logaritmálás nélkül is megy a dolog persze), a limesz definíciójából kiindulva megmutatjuk, hogy létezik
és -vel egyenlő.
|
Előzmény: [325] nadorp, 2008-03-03 21:56:02 |
|
|
[339] epsilon | 2008-03-04 17:49:25 |
OK, köszi mindkettőtöknek! Így már tiszta!
|
|
[338] sakkmath | 2008-03-04 15:48:23 |
Egyetértőleg csatlakozom az előttem szólóhoz. A 297. feladat szövege nem szól az f függvény [0;1]-beli differenciálhatóságáról, ezért a kovexitás érintős definícióját ne használjuk. A konvexitás kérdésében - tankönyv híján - vegyük a WIKIPÉDIA másik definícióját:
Az f: I R intervallumon értelmezett valós változójú függvény konvex, ha a függvénygörbe (bármely, az adott intervallumba eső ÿ(kiegészítés tőlem)) két pontját összekötő húr a függvénygörbe fölött halad ...
|
|
|
|
[335] epsilon | 2008-03-04 14:21:49 |
Helló nadorp! gondolom, hogy ezzel nem lehetne belátni, hogy a (0,1) intervallumon nem lenne konvex (csak egy értéket mondtam), és az ábrádon megpróbáltam csak a függvényt meghagyni, és az 1/2-ben van bal illetve jobboldali "alsó érintő" és miért ne lenne konvex az a függvény, amt így látunk?
|
|
Előzmény: [331] nadorp, 2008-03-04 09:43:27 |
|
|
|
|
|
[330] epsilon | 2008-03-04 06:30:32 |
Kedves Lajos és Cauchy! Kösz a magyarázatokat, de még mindig nem világos számomra az pl, hogy mondjuk az a=1/2 értékre miért nem konvex (mert ez ugye nincs a [0,1]-en kívük, és mégsem konvex?! (A derivált esetén a törést megértettem, hiszen mondjuk lehet akár szögpont, visszatérőpont, stb. ahol a két szélső derivált nem egyenlő, a pontban húzott "félérintők" így is a grafikus ábra alatt maradnak.)
|
|
[329] epsilon | 2008-03-04 06:24:17 |
Köszi nadorp a megerősítést! Én csak azon csodálkozom, hogy lehet ilyen feladatokat tesztfeladatoknak adni feleletválasztósnak, hiszen a többi eredmény csak kelepce volt, végül is meg kell oldani, és nincs semmi ami a feleletválasztóshoz kapcsolná.(sem logikai kizárások, stb.)
|
|
|
[327] Lóczi Lajos | 2008-03-03 23:38:57 |
A törés természetesen fennáll, de vedd figyelembe, hogy az f függvényed értelmezési tartománya csak a [0,1] intervallum volt, tehát érdektelen számunkra, mi és hogy törik azon kívül.
|
Előzmény: [324] epsilon, 2008-03-03 18:51:57 |
|
|
[325] nadorp | 2008-03-03 21:56:02 |
Az szerintem is jó. Én így számoltam:
Könnyen látszik, hogy , ahonnan - felhasználva a Stirling formulát -
, azaz
.
Tetszőleges >0-hoz létezik N, hogy
(1-)N+ln aN<ln aN+1<(1+)N+ln aN
(1-)(N+N+1)+ln aN<ln aN+2<(1+)(N+N+1)+ln aN
...
teljesül minden k-ra, azaz
|
Előzmény: [314] epsilon, 2008-03-02 09:15:39 |
|
[324] epsilon | 2008-03-03 18:51:57 |
Kedves Lajos! Az a=0 és a=1 értékek esetén a 2 tagra alkalmazott Jensen-féle egyenlőtlenség valóban megadja az f konvexitását, kösz a hozzászólásod ahol írtad! Most már csak az a furcsa, mint írtam, hogy ezekben az esetekben is fennáll az, hogy az x=0 ill. x=1 esetekben nem teljesül a 2a-1=2a+1, vagyis a deriváltal=érintőmeghúzhatósággal való gond továbbra is homályosít? Mi a valódi helyzet, miért van ez a látszólagos ellentmondás? Mert azzak, hogy e 2 pontban konvex, még nem zárja ki, hogy más ban ne lenne az!? Üdv: epsilon
|
|
[323] epsilon | 2008-03-03 18:26:27 |
Kedves Lajos! Örvendek, hogy megint jelentkeztél, mert továbbra is érdekelne a 297-es feladat tisztázása (ezúttal nem írtam el), vagyis, hogy miért edták arra azt a választ, hogy PONTOSAN 2 olyan "a" érték van amelyre az konvex lenne. Mint láttuk, az x=a-ban nem deriválható, viszont Te meg írod a 302-ben, hogy az a=0 és a=1 esetben konvex, bocs de Én nem látom miért, mert ebben a 2 esetben is fennáll a már említett 2a-1=2a+1 absurdum, ami az a pontban való deriválhatóság származtat.(vagyis nem húzható az érintő, és ebben a pontban nem érvényes a konvexitás jelzett értelmezése!?) Üdv: epsilon
|
|
|
[321] epsilon | 2008-03-03 17:56:23 |
Huh a rézangyalát! Elnézést kérek Mindenkitől! Annyira bele vagyok merülve ebbe meg az ilyen típusú csapdás feladatokba, hogy egy 2-es hatványkitevőt elhagytam, amire egyébként a megoldásaimat is leírtam, tehát elnézéseteket kérve a rekurzió HELYESEN:
|
|
|
|
[319] Lóczi Lajos | 2008-03-03 17:02:01 |
"aránypárok tulajdonságát használtam, és az a(n+2) alá hoztam az egyik a(n+1)-et, és a jobboldalon a nevezőbe vittem az ottmaradt a(n+1) alá az a(n)-et."
Összesen csak 1 db an+1 van, ha azt átviszed a bal oldalra, a jobb oldalon nem marad már meg!
|
Előzmény: [316] epsilon, 2008-03-03 16:23:32 |
|