[383] epsilon | 2008-03-18 06:41:43 |
Ja: értem, mindjárt nem tudom a szorzótáblát sem :-( hiszen 245=5×5×11 helyesen 275=5×5×11, tehát sugalni akartam a 275 felbontását.
|
|
|
|
[380] epsilon | 2008-03-17 18:18:18 |
Hát igen :-) kösz, "szász a lován ül és keresi" :-) szóval nem akartam belenyugodni, hogy nem talál az eredmény azzal amit a megoldásnál láttam, így másképpen próbálkozva, még az m=-2 is elveszett, de megtaláltam. Kösz!
|
Előzmény: [379] cauchy, 2008-03-17 16:33:18 |
|
|
|
|
[376] epsilon | 2008-03-17 14:59:13 |
Helló cauchy! "(277) Nekem az jön ki, hogy m = -2." Ez hogyan jött ki, mert Nekem az m×m-2m+3=0 egyenlet jött ki, így nincs megoldás :-( valóban így lenne? "(131) Nem azért, mert [0, 4) a helyes?" Ez valóban teéjesen Ok, mert nem föltétlen muszáj, hogy a nevező 2-od fokú legyen, lehet "degenerált" is, és akkor nem szükséges a d<0 mert az már értelmetlen. Kösz az észrevételt! Üdv: epsilon
|
Előzmény: [365] cauchy, 2008-03-07 22:15:03 |
|
[375] epsilon | 2008-03-17 14:45:58 |
116-os: Minden n pozitív egész szám esetén jelölje Inv(n) azon (x,y) egész számpárok számát amelyek szimmetrizálhatók és amelyekre x×x+y×y=n×n. Mennyi a következő összeg értéke: Inv(1)+Inv(2)+Inv(3)+...+Inv(2005)
|
|
[374] epsilon | 2008-03-17 14:41:38 |
Közben még előkerültek a múlt héten függőben maradtak, íme még egy:245-ös. Tekintsük a lennebb látható egyenletet, minden n>=2 pozitív egészre. Melyek azok az n értékek, amelyekre az egyenletnek van legalább 1 pozitív egész megoldása? A válasz: 4s+3 ahol s nemnegatív egész, ellenben Én már n=3 esetén nem láttam az egész megoldást, hiszen ez a245=5×5×11 pozitív osztói közül való kell legyen. Nagyon gyanus ez az eredmény. Az lenne a kérdésem, hogy az n=4s+3 bár egy szükséges feltétel? Mert szerintem nem elégséges, vagy tévedek? Itt az egyenlet:
|
|
|
[373] epsilon | 2008-03-17 14:28:05 |
Helló! Ismét jelentkezem, egy jámbornak tűnő limesszel, hiába fejtettem ki a kombinációkat, egszerűsítés után sem találtam valami olyan alakra ami a megadot limeszértéket adja. (Ezt egyenlőre még nem mondanám meg, mert megint azt vadászom, vajon az eredmény jó-e?) Íme a limesz, és előre is kösz bármilyen jó tippet! Üdv: epsilon
|
|
|
[372] epsilon | 2008-03-09 19:24:31 |
Talán a legrövidebb megoldás erre a feladatra az affixumokkal ( a csúcsokhoz rendelt komplex számokkal) van: Legyenek rendre a,b,c,d az ABCD négyszög csúcsainak affixumai, legyenek M,N,P,Q az AB, BC, CD, DA oldalak felezőpontok affixumai, ezért: m=1/2(a+b), n=1/2(b+c), p=1/2(c+d), q=1/2(d+a). Az MNPG paralelogramma <=> m+p=n+q ami azonnal adódik.
|
|
|
[370] Róbert Gida | 2008-03-08 22:27:36 |
Halálismert példa. Legyen ABCD a négyszög. P az AB oldal felezőpontja, Q az BC oldalé, R a CD oldalé, S a DA oldalé. Ekkor a felezőpontok által meghatározott négyszög csúcsai sorrendben: PQRS. Az, hogy paralellogramma azzal ekvivalens, hogy a szemközti oldalai párhuzamosak, azaz PQ||RS és QR||SP kell. De PQ az ABC háromszög középvonala, így párhuzamos az alappal, ami az AC, továbbá RS a CDA háromszög középvonala, így párhuzamos az alappal, ami az AC. Ergó mindkettő párhuzmaos az AC-vel, így PQ és RS egymással is párhuzamosak. Hasonlóan QR és SP is párhuzamos. Ami kellett.
Standard megoldása egyébként vektorokkal van. Az is elemi.
|
Előzmény: [369] Onkie, 2008-03-08 22:12:28 |
|
[369] Onkie | 2008-03-08 22:12:28 |
Sziasztok!
Valaki el tudná küldeni e-mailben annak a tételnek a bizonyítását, hogy bármely tetszőleges négyszög oldalainak felezőpontjait összekötve paralelogrammát kapok? Az egész napomat a bizonyítással töltöttem, eredménytelenül... A segítséget előre is köszönöm! E-mail címem: xuli27@hotmail.com
U.i.: ha nem oldható meg az e-mailben való elküldés, e-mailben írd meg, hogy válaszoltál. Ez esetben is előre köszönöm a fáradozásokat!
|
|
[368] epsilon | 2008-03-08 09:46:19 |
(277)-nél, ha az általuk elfogadott -3 értéket behelyetesítem mindhárom egyenletbe, ez az ellentmondás jön ki: egyrészt xy=5 másrészt xy=-13/5. Amit Te mondasz, valóban az egyedüli, és jó is, mert ha az utolsó 2 egyenletet összeadtam (m+2)(x+y)=m+2 jön ki, és ha m+2 nem 0 akkor x+y=1 és a három egyenlet alapján egyrészt mxy=3 másrészt xy=2-m jön ki, marad m=-2 és erre az S=x+y=11 és P=xy=-17/2 és az ezzel felírt másodfokú egyenletnek van valós megoldása. Szerintem nagyon az a gyanúm, hogy ezúttal a könyvben tévedtek.
|
Előzmény: [365] cauchy, 2008-03-07 22:15:03 |
|
[367] epsilon | 2008-03-08 09:31:52 |
(131)esetén nem kizárt, hogy [0,4) lenne a helyes megoldás, de csupán azon tűnődöm, hogy a "jól értelmezett" fogalomba belefér-e ez is, hogy a nevezőben levő másodfokú föggvény elsőfokúvá vagy álllandóvá fajuljon, de mivel erre nincs kikötés meglehet, hogy ez a megoldásod a jó. Számomra még az fura, hogy miért nem jön ki ez a 0 érték a tört létezési feltételből, hiszen akkor a létfeltétel d<0 helyett d<=0 és a nevezőnek ne legyen valós gyöke, nem de? Vagyis túl szinguárisan osont be ez a 0.
|
Előzmény: [364] cauchy, 2008-03-07 19:07:15 |
|
[366] epsilon | 2008-03-08 09:25:34 |
Helló cauchy! Nem kell általánosan minden x,y-ra szimmetrikus legyen, de speciálisan az e-re igen, mint írtad e*x=x*e és ez azt eredményezi, hogy e-x=x-e kellene legyen minden x-re a (-1,1) intervallumbóltehát, az alapötleted elegendő erre a speciális egyedi kommutativításra!
|
Előzmény: [363] cauchy, 2008-03-07 18:48:00 |
|
|
|
|
[362] epsilon | 2008-03-07 18:45:52 |
Köszi cauchy! Hát igen, ez szép kis leégés, mert...rutinból csak x*e=x megoldása berögzült...:-( Szóval ez kilőve! Hátha a másik 2 nem éppen ilyen...
|
|
|
[360] epsilon | 2008-03-07 13:31:48 |
Bocs a [-3,-3] elgépelés helyette [-3,-2]
|
|
[359] epsilon | 2008-03-07 13:29:17 |
A hozzáfűznivalóim:
(131) Én arra gondoltam, hogy a nevezőnek ne legyenek valós gyökei, így a d<o ahonnan m a (0,4) intervallumhoz tartozik. A megadott helyes (?) válasz: más válasz (még választhatók voltak: R, 4, -1, (0,4).
(117) Sima számolásokkal kijött, hogy e=0, és ez (-1,1) között van. A megadott helyes (?) válsz: nem létezik semleges elem.
(277) Az x+y összeget S-el, az xy szorzatot P-vel jelöltem, és pl. ha az alsó 2 egyenletet megoldom, és a megoldás kell teljesítse az első egyenletet, akkor sem kapok intervallumot, és a helyes megoldás: [-3,-3]
Nektek mi a véleményetek? Előre is kösz, üdv: epsilon
|
|