Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]  

Szeretnél hozzászólni? Jelentkezz be.
[452] Valvehead2008-04-12 15:19:51

Első hozzászólás alkalmából üdvözlöm a fórumot! Hatodik osztályos versenyfeladattal nem boldogulok, hátha valaki tud segíteni... Melyik szám lehet a sorozat 10. eleme?

1; 2; 3; 3; 2; 3; 4; ..; ..; ..

Persze, explicit alakban biztos harmadfokú (3db 3-as) meg gondolom van rá egy primitív rekurziós képlet, amitől fogom majd a fejem...

Aki foglalkozik vele, annak előre is köszönöm szépen!

[451] Róbert Gida2008-04-11 17:34:09

Egyébként, ha van otthon véletlenül egy kvantumszámítógéped, és tudod *programozni*, akkor szerintem ne habozz és Schor algoritmusát *programozzad* le a kvantummicsodádon, az polinom időben kiköp egy y megoldást

Előzmény: [450] Róbert Gida, 2008-04-11 17:23:32
[450] Róbert Gida2008-04-11 17:23:32

Különböző dolgokról beszélsz, páratlan n esetén az, hogy nincs más megoldás csak a triviális y=1, illetve y=n ekvivalens azzal, hogy n-nek nincs más pozitív osztója, azaz n az prím (n>1 fel volt téve). Erre pedig van már gyors egzakt polinomiális teszt, az "AKS test", keress rá az interneten, persze vannak véletlen (nem egzakt) módszerek is. Míg legalább egy y megtalálására nincs gyors módszer, hiszen ez a szám faktorizálásával polinomiálisan ekvivalens probléma, amiről nem tudjuk, hogy gyorsan meg lehet-e csinálni.

Előzmény: [448] csewe, 2008-04-11 15:02:30
[449] Sirpi2008-04-11 15:41:50

De ez nem segít a szűkítésben, ahogy már írtam...

Megfelelő x, y pár megtalálása egyenértékű azzal, hogy megtalálod azt az y-t, ami osztja n-et.

Előzmény: [448] csewe, 2008-04-11 15:02:30
[448] csewe2008-04-11 15:02:30

szia Sirpi

addig én is eljutottam,hogy y = 1 , de mint írtam 1 < y

mert igazából az érdekelne hogy van e másik felbontása n -nek mert sok esetben van mégha nem is kapom meg a másik felbontást de el kellene döntenem , hogy létezik e.

egyébként ezek az én agyam szüleményei , a progimhoz kellene. azért ,hogy ne keljen minden értéket végig zongorázni.

Előzmény: [447] Sirpi, 2008-04-11 10:41:55
[446] epsilon2008-04-11 10:56:21

OK nadorp, kösz, valóban elszámoltam, mert Nekem a tg a 2n-en lett, mert egy sin a négyzeten "bennmaradt" :-( Túl csábító volt az a változócsere, és csodálkoztam is, hogy miért nem jön össze! Üdv: epsilon

Előzmény: [440] nadorp, 2008-04-09 16:14:07
[447] Sirpi2008-04-11 10:41:55

Figyi, minden feladatod arra megy ki, hogy n-et két szám szorzatára kell bontani, és ahogy már írtam korábban, az sokjegyű számokra nehéz. Itt is a felbontás a lényeg, hiszen odáig az átalakítások teljesen triviálisak:

n = x^2 - (x-y)^2 = \left( x + (x-y) \right) \cdot \left( x - (x-y) \right) = (2x-y) \cdot y

És ha most n páratlan (amit fel lehet tenni, mert ha páros, akkor osztjuk 2-vel, és n/2-et próbáljuk felbontani), akkor annak minden kéttényezős felbontására egyértelműen fogunk kapni egy páratlan y-t és egy egész x-et (n-nek minden y osztójához x=(y+n/y)/2).

Egyébként ennek könnyű megadni egy triviális megoldását, ha n páratlan (helyettesítsd be): x=(n+1)/2, y=1

Amúgy honnan szeded ezeket a felbontásokat?

Előzmény: [445] csewe, 2008-04-11 10:03:14
[445] csewe2008-04-11 10:03:14

sziasztok

ismét kérnék egy levezetést

n = x négyzet - (x - y) a négyzeten

1 < y < n-1 valószínűleg páratlan

0 <= x pozitív egész

x -et és y -ont keresem

köszi

[444] Róbert Gida2008-04-10 22:55:10

Érdekes kérdés. Jelölje f(n) az osztók maximális számát (k\le n!-ig minden egész előáll n!-nak legfeljebb f(n) darab különböző (pozitív) osztójának összegeként). Dinamikus programozással kiszámítható ez a sorozat kis n-ekre:

f(1)=1,f(2)=1,f(3)=2,f(4)=3,f(5)=4,f(6)=5,f(7)=5,f(8)=6,f(9)=7,f(10)=7,f(11)=7

Nagyobb n-re már nincs elég memóriája a gépemnek. Egyszerű program O(n!) memóriát igényel.

Hasonlóan az eredeti feladat bizonyításához így minden n\ge11-re f(n)\len-4 is teljesül! Sőt szerintem nehéz számelméleti sejtésekkel rögzített c>0-ra f(n)<c*n is teljesül, ha n elég nagy.

Előzmény: [442] S.Ákos, 2008-04-09 21:37:21
[443] Lóczi Lajos2008-04-10 11:10:51

Pl. ha az integrandus mondjuk folytonos és a kiintegrált résznek van limesze (abban a pontban, ahol azt az improprius integrál megköveteli).

Előzmény: [441] Gyöngyő, 2008-04-09 18:16:40
[442] S.Ákos2008-04-09 21:37:21

Sziasztok!

A B.4055-ös feladatnál (Bizonyítsuk be, hogy minden n!-nál nem nagyobb pozitív egész szám felírható az n! legfeljebb n darab különböző osztójának összegeként.) egész könnyen adódik, hogy n-1 tag is elég n>1 esetén. a kérdés az lenne, hogy ennyi mindig kell-e, vagy ez is csökkenthető tovább, ha n nő, és ha igen, melyik az a függvény, ami megadja a tagok minimális számát?

[441] Gyöngyő2008-04-09 18:16:40

Sziasztok!

Lenne egy olyan kérdésem,hogy milyen esetben lehet parciális integrálást alkalmazni impropius integrál kiszámitására?

Köszike:

Zsolt

[440] nadorp2008-04-09 16:14:07

Az is jó, de nem kell rekurzió, ui. valami ilyet kellett, hogy kapjál az integrandusra: \frac1{\cos^2t}(\tan t)^{2n-1}, ez pedig g^k(x)g'(x)=\frac 1{k+1}\cdot \big(g^{k+1}(x)\big)' alakú

Előzmény: [438] epsilon, 2008-04-09 15:48:31
[438] epsilon2008-04-09 15:48:31

Köszi nadorp, mindjárt nem is merek szólni, mert ez valóban átvert, és nem is modhatni kemény diónak, én az x=a×cos2t változócsrét alkalmaztam, és tangenshatványnak az integrálja lett, amit csak rekurziósan bonyolítottam :-(

[437] nadorp2008-04-09 15:15:16

Legyen \frac{a-x}{a+x}=y. Ekkor az integrál erre "fajul":

\int_0^1\frac{y^{n-1}}{2a}dy

Előzmény: [435] epsilon, 2008-04-09 14:08:01
[436] epsilon2008-04-09 14:25:40

A 434. hsz-ban mindenütt (0,1) helyett [0,1] a helyes. Bocs az elírásért!

[435] epsilon2008-04-09 14:08:01

Annak örömére, hogy nadorp ilyen szép elemi megoldást adott, fe merészkedek tenni még egy feladatot, szimpatikus, de nem ugrik be :-( Igazolandó, hogy:

[434] epsilon2008-04-09 11:01:28

Köszi nadorp! Ez az igazi, amit nem találtam meg. Már-már részletezni akartam, hogy végre elég hosszadalmasan, de megoldottam, de nem tetszik, mert hosszú, noga ötletes. De azért elmesélem: patametrizáltam a [-1,-1/3] intervallumot, ennek parametrizált alakja (2/3)*t-1 ahol t a (0,1) intervallumban van. Tehát f(x) nem egyenlű ezzel az értékkel egyetlen t a (0,1) esetén sem. Ez azt jelenti, hogy a kapott x-ben másodfokú egyenletnek nincsenek valós gyökei, tehát a d<0 (d a diszkrimináns). Ekkor t-ben egy máodfokú egyenlőtlenséget kaptam, nullára rendeztem, és az kell teljesüljön minden t a (0,1) intertvallumból. A baloldali függfényt g(t)-nek jelölve, tehát g(t)<0 minden t a (0,1) intertvallumból. Végül a főegyüttható előjele szerint letárgyalvam mindkét esetben benne kell legyen a g(0)<0 és g(1)<0 feltétel, és a többiekkel is metszve marad ez, ami nem más mint a<-1/4. Kösz szépen mindegyikötöknek az ötletet és a segítséget! Üdv: epsilon

Előzmény: [433] nadorp, 2008-04-09 08:51:32
[433] nadorp2008-04-09 08:51:32

Az, hogy f(x)<-1 vagy f(x)>-\frac13 teljesül minden x-re ekvivalens azzal, hogy \left(f(x)+1\right)\left(f(x)+\frac13\right)>0 teljesüljön minden x-re.

0<\left(\frac{x-1}{a+1-x^2}+1\right)\left(\frac{x-1}{a+1-x^2}
+\frac13\right)=\frac{(-x^2+x+a)(-x^2+3x+a-2)}{3(a+1-x^2)^2}

(x2-x-a)(x2-3x-a+2)>0

A baloldal egy pozitív főegyütthatójú negyedfokú polinom,ami pontosan akkor pozitív minden x-re, ha nincs valós gyöke, azaz a szorzatban szereplő másodfokú polinomok diszkriminánsa negatív. Innen a<-\frac14

Előzmény: [423] epsilon, 2008-04-07 19:41:32
[432] Káli gúla2008-04-08 19:27:42

A tört reciproka egyszerűbb függvény, a képe egy hiperbola lesz az  y = -x-1 és az x=1 aszimptotákkal. Ha a>0, akkor a tompaszögű tartományban van a függvény és semmilyen értéket nem hagy ki. Ha a<0, akkor az y=-2 egyenesre szimmetrikus sávon kívül halad. Annak, hogy ez a reciprok függvény egy adott k értéket ne vegyen fel, az a feltétele, hogy az 1-x2+a=k(x-1) egyenletnek ne legyen megoldása, azaz a diszkrimináns d=k2+4(k+1+a)=(k+2)2+4a<0 legyen, tehát a<-\frac{(k+2)^2}{4}. Ez akár a -1-gyel, akár a -3-mal pont azt adja, amit cauchy írt. Ahogy a-val tartunk a 0-hoz, úgy fog a hiperbola "hegyesedni", és ezért belemetszeni az y=-1 és y=-3 közötti sávba. (A hiperbolára azért érdemes nézni, hogy elhiggyük azt, amit számolunk:)

Előzmény: [431] epsilon, 2008-04-08 17:51:29
[431] epsilon2008-04-08 17:51:29

Helló! Én úgy próbáltam, hogy ne vegyen fel értékeket a [-1;-1/3] intervallumból, akkor f(x)<-1 vagy f(x)>-1/3 minden x valós szám esetén, aztán egy-egy törtet kaptam, amelyek másodfokú függvényeket tartalmaznak, ás próbáltam a diszkrimináns < 0 feltételeket, a baloldaliból jött ki eredmény, a jobboldaliból nem, de sejtem is a hibát: az f(x)<-1 nem muszáj MINDEN x-re fennáljon, amikor pl. ez nem áll fenn, azon x-re álljon fenn az f(x)>-1/3...tehát nem tudom, hogy a d<0 feltétellel egyáltalán lehetne-e valamit kezdeni. Nézem, a függvány monotonítását, onnan semmi, egyenlővé tettem y-nal és x-ben másodfokú egyenletnek valós megoldásai kell legyene, kaptam y-ra egyenlőtlenséget, vagyis képhalmazt...de ezt sem tudtam összhangba hozni az adott intervallummal..pedig a feladat nem tűnik komolynak, és mégis?!

Előzmény: [430] cauchy, 2008-04-08 15:51:53
[430] cauchy2008-04-08 15:51:53

Sajnos, empirikusan kerestem meg, és nem tudom, mi a módszer. :-( A tiédre tudnék ellenpéldát mondani, de az most lényegtelen.

Előzmény: [428] epsilon, 2008-04-08 09:10:51
[429] jonas2008-04-08 10:39:18

Igen. Hülye hiba volt.

Előzmény: [427] sakkmath, 2008-04-08 09:08:19
[428] epsilon2008-04-08 09:10:51

OK Cauchy, ez az eredmény, de Nekem csak az a<0 jön ki, valamit elveszítek :-( Ha a sejtésd bizonyítható, írhatnál egy pár támpontot! Előre is kösz, üdv: epsilon

Előzmény: [424] cauchy, 2008-04-07 21:27:29
[427] sakkmath2008-04-08 09:08:19

Feltéve, hogy x, y > 0, az azonosság helyesen: log(xy) = logx + logy.

Előzmény: [426] jonas, 2008-04-07 22:55:41

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]