Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]  

Szeretnél hozzászólni? Jelentkezz be.
[548] S.Ákos2008-06-24 12:32:10

köszönöm szépen a segítségeketeket

Előzmény: [547] Róbert Gida, 2008-06-24 00:27:47
[547] Róbert Gida2008-06-24 00:27:47

Mordell egyenlet a neve, nagyon sok kis értékre az összes megoldását kiszámolták már, azt hiszem magyarok eredménye a következő táblázat is, szinte az oldal legalján van a te egyenleted az -00020, ahogy látod nincs más természetes egész megoldása:

http://tnt.math.metro-u.ac.jp/simath/MORDELL/MORDELL-

Előzmény: [544] S.Ákos, 2008-06-23 21:32:04
[546] Ansible2008-06-23 23:43:19

Bocs: az x2+20 alakithato itt szorzatta: (x+2i\sqrt{5})(x-2i\sqrt{5}).

Előzmény: [545] Ansible, 2008-06-23 23:41:29
[545] Ansible2008-06-23 23:41:29

A Freud-Gyarmati: Szamelmelet-ben benne van, hogy az x2+5=y3-nek nincs megoldasa. Ez a 11.6.4/a feladat. A megoldas soran az a+b\sqrt{5}i-ben alakitjuk szorzatta a baloldalt, es mivel ebben a gyuruben nem ervenyes a szamelmelet alaptetele, az idealokkal kell jatszani.

Az x2+5=y3 ugyanebben a gyuruben alakithato szorzatta. Ketlem, hogy a fentinel kiralyibb ut lenne.

Előzmény: [544] S.Ákos, 2008-06-23 21:32:04
[544] S.Ákos2008-06-23 21:32:04

Sziasztok! Valaki segítene megoldani az x2+20=y3 egyenletet, ha x,y\inN?. Előre is köszönöm. (x=14 y=6 jó, de y=2000-ig valószínűleg nincs más)

[542] Csimby2008-06-08 17:41:37

1.a: x -> 2x (x\inZ számhoz a kétszeresét rendeli, könnyen látható hogy ez injektív, szürjektív -> bijekció)

1.b: x -> 2x+3

2.: Csak az a feladat, hogy valahogy felsoroljuk őket (ugye az hogy 0,1,2,3,... nem jó mert a negatívok kimaradnak): 0,1,-1,2,-2,3,-3,...

Előzmény: [541] Norbert, 2008-06-08 17:20:09
[541] Norbert2008-06-08 17:20:09

Hi! Szerdán vizsgázok, sajnos és segítséget szeretnék kérni kettő feladatba mivel utálom a halmazokat. ELőre is köszönöm.

1. Adjon meg bijekciót két halmaz között: a) a pozitív egész számok halmaza és a páros pozitív számok halmaza; b) a [0,1] intervallum és a [3,5] intervallum.

2. Adja meg az egész számok halmazának egy sorozatbarendezését. (légyszi írja le vki hogy ez valójában mi vagy mit értünk ez alatt?)

[540] Sirpi2008-06-02 07:44:04

Az irracionális számok képe legyen önmaga; ekkor már csak a rac. számokat kell párosítani. Soroljuk fel az összes [0,1]-beli rac. számot (q1,q2,...), ezek közül az 1 legyen a qk. Ha i<k, akkor qi-hez rendeljük önmagát, ha i>k, akkor qi képe legyen qi-1 (így qk kivételével minden rac. számhoz hozzárendeltünk egy rac. számot).

* * *

Ugyanez kicsit egyszerűbben:

Ha az x\in[0,1) szám 1/2k alakú, akkor x\to2x, ellenkező esetben x\tox.

Előzmény: [539] Gyöngyő, 2008-06-02 00:14:55
[539] Gyöngyő2008-06-02 00:14:55

Üdv! Aki tud légyszi segítsen megoldani a feladatot, mert szerdán sajnos vizsgázok. Előre is köszönöm.

Feladat: Adjon meg bijekciót a [0,1) és [0,1] halmazok között.

[538] nadorp2008-05-23 07:54:54

Tudom, hogy a példa már történelem :-), de itt egy közvetlen levezetés.

Legyen a_n=\frac12*\frac13*...*\frac1n

Ekkor a_{n+1}=a_n*\frac1{n+1}=\frac{(n+1)a_n+1}{a_n+n+1}, így

a_{n+1}+1=\frac{(n+2)(a_n+1)}{a_n+n+1} és

a_{n+1}-1=\frac{n(a_n-1)}{a_n+n+1} tehát

\frac{a_{n+1}+1}{a_{n+1}-1}=\frac{n+2}n\cdot\frac{a_n+1}{a_n-1}=...=\frac{(n+2)(n+1)...4}{n(n-1)...2}\cdot\frac{a_2+1}{a_2-1}=-\frac{(n+1)(n+2)}2

Innen a_n=\frac{n^2+n-2}{n^2+n+2}, ami persze azonos Sirpiével.

[537] jonas2008-05-20 23:59:03

De, csak \lambda=1/c2. Akkor innen ismerhettem ezt a képletet.

Előzmény: [536] jonas, 2008-05-20 23:55:43
[536] jonas2008-05-20 23:55:43

Egyébként ez nem pont a spec. relativitáselméletes addíciós képlet a sebességekre, ha \lambda=1/c?

Előzmény: [534] Sirpi, 2008-05-20 23:51:25
[535] jonas2008-05-20 23:52:56

Persze, én is a tangensről tudtam de a  \tg\left(\sqrt{-\lambda}\cdot x\right) képlet rondábban néz ki.

Előzmény: [534] Sirpi, 2008-05-20 23:51:25
[534] Sirpi2008-05-20 23:51:25

Ja, végül is ez tényleg megmagyarázza :-)

A -1-re megvolt a sima tangens, +1-re meg a feladat miatt megnéztem külön, aztán általánosan is. Bevallom, rég volt szükségem a th addiciós képletére...

Előzmény: [533] jonas, 2008-05-20 23:45:11
[533] jonas2008-05-20 23:45:11

Meglepett? Azt hittem, tudtad, hogy azért igaz, mert valami  a = \th \left(\sqrt\lambda\cdot x\right) vagy hasonló helyettesítéssel összeadásba (negatív \lambda esetén modulo \pi összeadásba) megy át.

Előzmény: [531] Róbert Gida, 2008-05-20 22:48:30
[532] Sirpi2008-05-20 23:39:40

Ja, valóban ez a megoldás, de 3 sorban, papíron is kijön ;-) Mindenesetre engem meglepett ez a tény.

Előzmény: [531] Róbert Gida, 2008-05-20 22:48:30
[531] Róbert Gida2008-05-20 22:48:30

Minden \lambda értékre. Pari-Gp-ben felírtam az asszociativitás feltételét, a két oldal különbsége meg nulla lett.

Előzmény: [530] Sirpi, 2008-05-20 22:38:16
[530] Sirpi2008-05-20 22:38:16

Ja, egyébként kicsit csaltam a megoldásnál, hiszen nem volt bezárójelezve a kiszámolandó kifejezés, és én balról jobbra végeztem el. Ennek alapján kérdés:

A *:R2\toR művelet, amit úgy definiálunk, hogy a*b = \frac {a+b}{1 + \lambda ab} mely \lambda értékekre asszociatív? (A kommutativitás magától értetődő a szimmetria miatt).

Előzmény: [522] Sirpi, 2008-05-20 08:08:14
[529] Róbert Gida2008-05-20 18:29:09

"ha nem lenne az, akkor a pozitív egész szám elnevezésnek nem lenne értelme"

Így viszont a nemnegatív egész szám elnevezésnek nincs értelme.

Előzmény: [526] rizsesz, 2008-05-20 15:53:28
[528] Káli gúla2008-05-20 16:37:30

Az persze kérdés, hogy ki mit tekint logikus vagy nyilvánvaló dolognak. Lehet, hogy sok embert éppen a logika téveszt meg a 0-val kapcsolatban:

(1) Valaminek a fele mindig kisebb, mint maga a valami (feleakkora).    (2) A 0-nál nincs kisebb.    (3) Tehát a 0-nak nincsen fele.

Logikusnak tűnik. (Azt hiszem, Arisztotelész mondta, hogy a nehezebb test nyilvánvalóan gyorsabban esik, mint a könnyebb. Galilei adott egy gyönyörű indirekt bizonyítást arra, hogy ez nem igaz.)

Előzmény: [526] rizsesz, 2008-05-20 15:53:28
[527] Csimby2008-05-20 15:58:38

Én úgy emlékszem általános iskolában nem volt se páros, se páratlan. Egyetmen páros. Gimiben is páros. De hogy a 0 természetes szám-e, az előadónként változik :-)

[526] rizsesz2008-05-20 15:53:28

A -400 pedig nem egy racionális szám négyzete... Szerintem a matematika egy abszolút logikus dolog, ahogyan az már korábban kiderült, pl. a 11-szög szerkesztéses témában. Szerintem nincsen értelme arról beszélni, hogy a 0 páros-e, mert abszolúte nyilvánvalóan az, akármelyik szabály szerint is vizsgáljuk. Hasonló ez ahhoz a kérdéshez, hogy 0 természetes szám-e (itt már csak a kicsit szofisztikált "ha nem lenne az, akkor a pozitív egész szám elnevezésnek nem lenne értelme" indoklás győtött meg engem a megállapodásokon túl :))

Előzmény: [525] BohnerGéza, 2008-05-20 15:23:16
[525] BohnerGéza2008-05-20 15:23:16

A 0 nem negatív és nem pozitív. Az 1 nem prím és nem összetett. (Valamint a gyök 2 nem páros és nem páratlan.)

Ha jól emlékszem.

Előzmény: [520] dadika, 2008-05-19 22:07:26
[524] dadika2008-05-20 13:26:06

Matek...

Előzmény: [521] jonas, 2008-05-19 22:47:42
[523] epsilon2008-05-20 10:14:23

Valóban Sirpi, a nagy sebességgel elpötyögtem a * helyett +. Kösz a szép általánosítást! Üdv: epsilon

Előzmény: [522] Sirpi, 2008-05-20 08:08:14

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]