Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]  

Szeretnél hozzászólni? Jelentkezz be.
[573] BohnerGéza2008-07-16 11:50:27

Az általad megfogalmazott feladat pontosabban talán:

Ha négy egyenes négy háromszöget alkot, akkor ezek magasságpontjai egy egyenesen vannak, körülírt köreik egy ponton mennek át. ( Nem tudtam, de ez speciális esetben a Miquel-pont ) Ez a pont és a magasságpontok egyenese parabolát határoz meg, melynek az eredeti 4 egyenes érintője.

Előzmény: [570] zsolla, 2008-07-16 07:34:57
[572] zsolla2008-07-16 10:50:09

Köszönöm! Tényleg elírtam.

Előzmény: [571] sakkmath, 2008-07-16 10:23:15
[571] sakkmath2008-07-16 10:23:15

Szerintem a Miquel-tételkört keresed (q \ne g). Keresd fel a Geometrikont itt. Klikkelj az M-betűre. A megjelenő, sorszámozott témakörök között a 410. a Miquel-pont, de érdemes megnézni a 407., 411. tételköröket is.

Előzmény: [570] zsolla, 2008-07-16 07:34:57
[570] zsolla2008-07-16 07:34:57

Valahogy igy lehetne, de szeretném pontosabban:

Ha a síkon felveszünk 4 egyenest, hogy azok 6 pontban metszék egymást, és 3 háromszöget alkossanak, majd megrajzoljuk a háromszögek köré írható köröket, akkor a körök egy pontban találkoznak, amit Miguel pontnak neveznek.

[569] BohnerGéza2008-07-16 02:48:43

Talán:

Miguel: Spanyolország Honda 125 köbcm 35 pont

Előzmény: [567] zsolla, 2008-07-15 20:29:01
[568] jonas2008-07-16 00:10:04

Nem tudom, de mivel az ETC nem ismeri ilyen néven, valószínűleg nem háromszögekhez kapcsolódik.

Előzmény: [567] zsolla, 2008-07-15 20:29:01
[567] zsolla2008-07-15 20:29:01

Pontosan meg tudná valaki határozni, hogy mit értünk Miguel ponton?

[566] Ágoston2008-07-15 19:45:54

Köszönöm

[565] BohnerGéza2008-07-15 17:08:27

Euklides-ben pontra vagy vonalra klikkeléssel (dupla kattintás) nyílik a cimke ablaka.

Az "et" jel (Alt Gr c) után írtak alsó indexként jelennek meg.

Előzmény: [563] Ágoston, 2008-07-15 11:23:20
[564] BohnerGéza2008-07-15 17:03:46

A szerkesztőprogram lényege, hogy úgy kell vele szerkeszteni, mint körzővel és vonlzóval!

Nem helyettesíti a tudásod. Látványossabbá, pontossabbá, könnyebben elemezhetővé taszi a szerkesztést.

Azért néha könnyíti a dolgokat, pl. háromszög belső szögfelezőjéhez a beírt kör kp-ja egyből fölvehető.

Előzmény: [562] Ágoston, 2008-07-14 21:22:10
[563] Ágoston2008-07-15 11:23:20

És címkéket hol lehet hozzáadni?

[562] Ágoston2008-07-14 21:22:10

Köszi szépen. Szögfelezőt hogyan lehet szerkeszteni?

[561] Huszár Kristóf2008-07-13 23:30:50

Én az Euklides ingyenes változatát használom évek óta. Szerintem elég jó. Innen tudod letölteni.

Ha 3D-s ábrákat szeretnél készíteni, akkor az Euler 3d-t tudom ajánlani. Itt érhető el.

Üdv.: Kristóf

Előzmény: [560] Ágoston, 2008-07-13 21:05:12
[560] Ágoston2008-07-13 21:05:12

Tud valaki javasolni egy olyan ingyenes programot, amely segítségével matematikai ábrákat tudok szerkeszteni? Előre is köszönöm.

[559] Gubbubu2008-07-11 08:42:06

Lehet, hogy a feladatra is nekünk kell rájönnünk :-)).

Előzmény: [558] Sirpi, 2008-07-10 19:28:37
[558] Sirpi2008-07-10 19:28:37

Persze, hallgatunk. De ha nem kérdezel rá, hanem rögtön beírod, lehet, hogy már meglenne a megoldás is :-)

Előzmény: [557] pocika75, 2008-07-10 19:17:11
[557] pocika752008-07-10 19:17:11

Sziasztok! a segítségeteket szeretném kérni egy kis fejtörőhöz. van hozzá kedvetek?

[556] jonas2008-07-10 13:02:35

Ha erre szükséged van, akkor a nyilvános (akár külföldi) szerencsejáték sorsolásokon kívül használhatsz tőzsdei árfolyamokat, időjárási adatokat, vagy az olimpia alatt sporteredményeket.

Előzmény: [555] jonas, 2008-07-10 12:59:56
[555] jonas2008-07-10 12:59:56

Szükséged van arra is, hogy a véletlen számaidat ne lehessen előre megjósolni (még részlegesen és nehéz számítással sem)? Ha nem, akkor használhatod valamilyen matematikai állandó (pl.  \sqrt3 ) tizedesjegyeit, ahogy azt némely titkosítási szabvány teszi, vagy az Abramowitz-Stegun véletlenszám táblázatát, amely korlátozások nélkül elérhető és az interneten is meg lehet nézni.

Előzmény: [549] Tibor, 2008-06-30 17:47:31
[554] Tibor2008-07-03 16:31:40

Köszi szépen,ez már jó lesz!!

Előzmény: [553] Róbert Gida, 2008-07-03 03:01:02
[553] Róbert Gida2008-07-03 03:01:02

Következő programot nézd meg (PARI-Gp-ben):

f(a)=c=10^100;N=random(c)+c;K=random(c)+c;\

while(1,N=nextprime(N+1);p=N;q=K+(a-N-K)%1001;if(isprime(q),print("n="p*q);print("p="p);print("q="q);return))

Ez egy ismert megvalósítása a problémának: p,q prímek n=p*q, úgy, hogy az elrejteni kívánt "a" számodra: (p+q) modulo 1001 = a teljesül. Nyilvánosságra hozod n értékét, majd amikor bizonyítani szeretnéd, hogy TE az "a" számra gondoltál 0-1000-ig, akkor nyilvánosságra hozod p és q értékét, az ellenőrzése a többiek számára, hogy nem csaltál:

1. n=p*q teljesül-e?

2. p és q prímek?

3. (p+q) == a mod 1001 teljesül-e?

Ezek mindegyike gyorsan ellenőrizhető akár a PARI-Gp-vel.

Persze ennél valamivel gondosabban kell megválasztani a prímeket, mert hiába lesz n>10^200, azaz nagyobb, mint a jelenlegi faktorizációs világrekord nem speciális számokra, vannak véletlen módszerek, amikkel n könnyedén faktorizálható: például akkor, ha p+1 vagy p-1 vagy q+1 vagy q-1 mindegyik prímfaktora "kicsi". Továbbá c értékét a programban célszerű módosítani, mert ugyanazon "a" értékekre futtatva ugyanazt az n-et adja a PARI indulásakor.

Előzmény: [552] Tibor, 2008-07-02 20:06:38
[552] Tibor2008-07-02 20:06:38

Sajnos ahogy én akartam, arra nem alkalmas sem a kenó, sem a putto. Szóval az alapproblémám megmaradt. Kétnaponként kellene nekem 25 db háromjegyű véletlenszám. De úgy, hogy ellenőrízhető legyen: nyilvános, bárki által hozzáférhető számok valamilyen átformálásával kéne létrehozni. Van valakinek ötlete?

[551] Tibor2008-07-01 14:25:58

Köszönöm szépen! Így gondoltam. Ezzel a képlettel már elboldogulok akkor is, ha nem a kenót, hanem valami más sorsolást veszek alapul.

Előzmény: [550] Róbert Gida, 2008-06-30 21:45:26
[550] Róbert Gida2008-06-30 21:45:26

Ha n számból húznak k számot és r számra tippelhetsz, akkor P(n,k,r)=1-\frac{\binom {n-r}{k}}{\binom {n}{k}} valószínűséggel lesz legalább egy találatod. Ahogy látod a komplemeter eseményt könnyebb kiszámolni, az pedig, hogy egy találatod sem lesz, a kedvező esetek és az összes esetek számát már könnyű számolni, a valószínűség pedig a kettő hányadosa lesz.

Ez egyezik is az általad írtakkal: P(80,20,1)=\frac 14, illetve P(80,20,61)=1 (persze, ha n-r<k, akkor \binom {n-r}{k}=0 ).

Előzmény: [549] Tibor, 2008-06-30 17:47:31
[549] Tibor2008-06-30 17:47:31

Sziasztok! Egy valószínűségszámítási problémám van. Egy játékhoz véletlenszámokat szeretnék előállítani, de úgy hogy ellenőrízhető legyen mások által is, hogy nem csalok. A kenóra gondoltam, mert azt minden nap húzzák. De nekem háromjegyű számok kellenének. Ráadásul különböző előzetes valószínűségekkel. Tehát a feladat: 80 számból húznak 20-at. Ha 1 számot tippelek, 25 százalék az esélye, hogy találatom lesz. Ha 61 számot tippelhetek, akkor 100 százalék az esélyem. De mennyi az esélye annak, hogy legalább egy találatom lesz, ha 2, 3, 4, ....stb számot tippelhetek? (Ez úgy lenne, hogy a nagyobb oddsokkal rendelkezők több számot tippelhetnek.) De ne gyertek azzal, hogy ez 10. osztályos tananyag, mert tudom. Sajna már régen tanultam. Valami ismétlés nélküli kombináció rémlik.... Köszi!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]