Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]  

Szeretnél hozzászólni? Jelentkezz be.
[713] sandor7202008-11-30 12:40:14

Szia!

A mapel-re gondoltál Robert Gida? Az ha jóltudom nem vezeti le csak a megoldást mutatja meg!

[712] Róbert Gida2008-11-29 22:58:01

Miért nem veszel egy Maplet/Mathematicat?

Előzmény: [711] sandor720, 2008-11-29 17:28:56
[711] sandor7202008-11-29 17:28:56

Köszönöm a segitséget! Vola itt még egy feladat

[710] Csimby2008-11-29 14:59:33

Van egy szabály \int{f^n\cdot f'} alakú integrálok kiszámolására. Ez kell most is. (itt többek közt ez is megtalálható)

Előzmény: [708] sandor720, 2008-11-29 13:36:32
[709] Gyöngyő2008-11-29 14:06:30

Legyen u=cos(x) ekkor -du=sin(x)dx,vagyis az integrálod már egy egyszerű \int-u^5du lesz,amit már könnyű kiszámolni!

Üdv.: Gyöngyő

Előzmény: [708] sandor720, 2008-11-29 13:36:32
[708] sandor7202008-11-29 13:36:32

sziasztok!

Köszönöm a segitségeteket integráláshoz nem tudom levezetni melyik szabály alkalmazható a:

[707] Gyöngyő2008-11-26 21:21:24

Szia!

Amit csináltam megoldást az pontosan az amit most leirtál. Azt mondta rá a tanárom,hogy szerinte sincs egyszerűbb megoldás.Majd megprobálom feltölteni a megoldásomat,ha sikerül,csak most ezzel a konvex geometriai feladattal szenvedek.

Üdv.: Gyöngyő

Előzmény: [706] sakkmath, 2008-11-26 18:54:21
[706] sakkmath2008-11-26 18:54:21

Kiegészítés: A (2) egyenlőtlenség bal oldalán álló kifejezés t-nek páros függvénye, ezért elég az egyenlőtlenséget t\ge0-ra bebizonyítani. Ekkor az alkalmazott x=e^t+\frac 1{e^t}helyettesítés már egy-egy értelmű megfeleltetést létesít az x-ek t-k halmaza között, hiszen az x(t)=2cht függvénynek csak az első síknegyedbe eső, szigorúan monoton növekedő részével van dolgunk.

Egy kérdés Gyöngyőhöz: Születtek-e a feladatra más, egyszerűbb megoldások?

Előzmény: [654] sakkmath, 2008-10-31 17:17:06
[705] Gyöngyő2008-11-26 16:27:58

Sziasztok! Az alábbi két feladathoz szeretnék segítséget kérni:

1.:Vesszük az összes konvex centrálszimmetrikus sokszöget.Az a kérdés hogy milyen határok között változik a kerülete,ha a saját normájában nézzük.Pl. ha a négyszöget nézzük akkor a négyszög normában mekkora a kerülete.

2.:Mekkora az azonos centrumú szabályos n-szög és kör Hausdorf távolsága?

Köszi elöre is. Gyöngyő

[704] Lóczi Lajos2008-11-24 07:29:16

Legyen pl. A az egységmátrix, és akkor \lambda=1 jó. Általában sok megoldás létezik. Adott v-hez és \lambda-hoz már 3 dimenzióban is végtelen sok A tartozik, hogy az egyenlet teljesül: legyen az A transzformáció olyan, hogy v irányában \lambda-szorosra nyújt, és a v egyenesére merőleges síkban valamekkora szöggel forgat.

Előzmény: [695] minoriole, 2008-11-23 16:52:29
[703] j.milan2008-11-23 22:42:50

Ez szerintem nem működik, csak bejelentkezett felhasználók esetén. De nekem ez a problémám, hogy nem tudok belépni. Ezt a regisztrációt azért hoztam létre, hogy a fórumon tudjak segítségt kérni az eredeti accom elfelejtett jelszava miatt.

Előzmény: [700] nadorp, 2008-11-23 21:25:17
[702] nadorp2008-11-23 21:59:06

Bocs, felvettem a szemüveget ( tényleg) :-)

\frac{3x-2}{x^2+4x+8}=\frac{(3x+6)-8}{x^2+4x+8}=\frac32\cdot\frac{2x+4}{x^2+4x+8}-\frac8{(x+2)^2+4}=\frac32\cdot\frac{2x+4}{x^2+4x+8}-\frac2{\left(\frac{x+2}2\right)^2+1}

Az első tagban a tört \frac{g^'}g alakú, a második pedig visszavezethető \frac1{x^2+1} alakra.

Használd fel, hogy \int\frac{g^'}g=\ln g és \int\frac1{x^2+1}dx=arc\tg x

Előzmény: [699] Valezius, 2008-11-23 21:24:31
[701] Valezius2008-11-23 21:42:21

Na megvan.

\int \frac{(3*x-2)}{(x^2+4*x+8)}=\frac32*\int\frac{(2*x+4)}{(x^2+4*x+8)}-8*\int\frac{1}{(x^2+4*x+8)}=\frac32*\ln(x^2+4*x+8)-2*\int\frac{1}{(\frac{x+2}2)^2+1}

ln után abszolút érték kell, az utolsó tag integrálja pedig -2* arctg \frac{x+2}2

Előzmény: [696] j.milan, 2008-11-23 17:08:10
[700] nadorp2008-11-23 21:25:17

Fórum->Adatmódosítás

itt tudsz jelszót változtatni

Előzmény: [694] szinuszhiperbolikusz, 2008-11-21 19:43:56
[699] Valezius2008-11-23 21:24:31

Ez jutott nekem is eszembe, míg rá nem jöttem, hogy osztás :)

Előzmény: [698] nadorp, 2008-11-23 21:22:32
[698] nadorp2008-11-23 21:22:32

Végezd el a szorzást, vond össze az azonos kitevőjű tagokat és használd az \int x^ndx=\frac{x^{n+1}}{n+1}+C összefüggést

Előzmény: [697] szinuszhiperbolikusz, 2008-11-23 20:32:54
[697] szinuszhiperbolikusz2008-11-23 20:32:54

Sziasztok!

Szerintem hagyjuk a jelszavamat, most van egy fontosabb problémám: (3x-2)/(x négyzet+4x+8) csúnyaságot kellene integrálnom ( bocsánat, de nem tok rendesen képletet szerkeszteni) Ti mit kezdenétek vele??? Köszi, SzH

[696] j.milan2008-11-23 17:08:10

Üdvözletem! Egy olyan technikai jellegű problémám merült fel, hogy elfelejtettem a jelszavamat. Nem találtam az oldalon sehol megfelelő emailcímet, akinél érdeklőhetek (lehet, hogy nem kerestem elég jól), ezért regisztráltam még egyszer, hogy itt kérdezzem meg. A régi accountomat azért szeretném használni többek közt, mert tesztversenyben is azt használom/tam... előre is köszönöm a segítséget

[695] minoriole2008-11-23 16:52:29

Mostmár napok óta agyalok ezen a problémán:

Nagyon sokmindent pubklikáltak már mátrixok sajátértékéről.

Ha van egy A mátrix akkor a karakterisztikus egyenlet megoldásával megkapjuk a sajátértéket és abból egyszerű egyenletekkel megkapjuk a sajátvektort.. de a másik irányról nem sokat hallottam:

Adott egy vektor, adjunk meg egy "sajátmátrixot" amire igaz hogy

A\vec{v} = \lambda \vec{v}

valamely \lambda-ra. Több megoldás is létezik ?? És ha \lambda=1 ?

[694] szinuszhiperbolikusz2008-11-21 19:43:56

Sziasztok!

Először is köszönöm a választ, tetszik ez az oldal, valszeg még soxor fogtok engem itt látni!:) Annyit akarok kérdezni, hogy a jelszót nem lehet valahyogy változtatni? Én ugyanis olyat kaptam, hogy nemhogy megjegyezni, de még matematikai képlettel megoldani sem lehet! Köszi!

[693] C. Mars2008-11-21 18:52:23

Köszi szépen. :)

Előzmény: [692] Sirpi, 2008-11-21 10:45:07
[692] Sirpi2008-11-21 10:45:07

A komplementer esemény kicsit egyszerűbb: az összes eset száma 40.30.20, hiszen az első húzás kizár 10, majd a második még 10 golyót, amiből választhatunk. A jó esetek száma pedig 36.27.18, hiszen először nem húzunk 10-est, ezt 36-féleképp tehetjük meg, ezután nem választhatjuk az első színt, se 10-est, vagyis marad 27 lehetőség, majd a 3. húzásnál 18. Tehát az eredeti kérdésre a válasz 1-(9/10)3. Érdemes észrevenni, hogy a megoldás nem függ a színek számától (feltéve, hogy van legalább 3).

Előzmény: [690] C. Mars, 2008-11-20 16:50:20
[691] Valezius2008-11-21 01:20:47

Én így számolnám.

1. eset: elsőre tízest húzok, Másodikra és harmadik másik 2színt húzok. (4/40)*(30/39)*(20/38)

2. eset: elsőre nem tízest húzok, másodikra 10-est húzok, ami más színű, harmadikra egy harmadik színt húzok: (36/40)*(3/30)*(20/38)

3. eset első két alkalommal nem húzok 10-est, csak harmadikra, és persze mind különböző színű. (36/40)*(27/30)*(2/38)

Ezek összege adja a keresett valószínűséget.

Előzmény: [690] C. Mars, 2008-11-20 16:50:20
[690] C. Mars2008-11-20 16:50:20

Üdv. Valaki legyen kedves, és árulja el az alábbi feladat megoldását. Előre is köszi!

Egy dobozban négyféle színű egyforma méretű golyók vannak, mindegyik fajtából 10 db, melyeket 1-től 10-ig megszámoztunk. Véletlenszerűen kihúztunk hármat. Mekkora az esélye, hogy köztük legalább az egyiken a 10-es szám szerepel, ha mind a három kihúzott golyó különböző színű?

[689] Valezius2008-11-18 21:46:33

Első lehetőség, a középiskolás módszer: felírsz 3egyenlet rendszert, és megoldod mindet.

Ha az eredeti mátrix (\matrix{a_1&a_2&a_3\cr b_1&b_2&b_3\cr c_1&c_2&c_3\cr})

Akkor az első egyenletrendszer ugyebár: a1+2*a2+a3=4 a2+3*a3=1 -a2-a3=-3

A másik kettőben persze a bal oldal ugyanaz, csak bi és ci lesznek.

Egy másik lehetőség, hogy a 3egyenletrendszert együtt oldod meg elemi bázis transzformációval.

A megoldás:

(\matrix{2&1&0\cr 0&0&1\cr -1&-1&0\cr})

Előzmény: [686] Alma, 2008-11-18 00:28:54

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]