Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]  

Szeretnél hozzászólni? Jelentkezz be.
[786] laci7772009-02-13 15:21:23

Üdvözlet Mindenkinek!

Egy 11.-es versenyfeladat így szól: bizonyítsuk be, hogy tetszőleges konvex négyszög oldalai négyzetösszegéből annak átlói négyzetösszegét kivonva az átlók felezőit összekötő szakasz négyzetének négyszeresét kapjuk.

Megköszönnék bármilyen kiinduló pontot, gondolatot. Eddig még csak az oldal szakaszfelelők által meghatározott paralelogrammával próbálkoztam, de nem sok sikerrel (vagy nem elég kitartóan). Csak annyit tudok, hogy ez az állítás paralelogrammák esetén igaz.

Köszönöm előre is.

[785] Sirpi2009-02-13 14:49:29

Ismert, hogy T=s.r=(s-a).ra=(s-b).rb=(s-c).rc

Helyettesítsük be az r-eket a bizonyítandó egyenlőségbe:

\frac{a\sqrt {s-a}}{\sqrt T}+\frac{b\sqrt {s-b}}{\sqrt T}+\frac{c\sqrt {s-c}}{\sqrt T} \geq \frac{6 \sqrt T}{\sqrt s}

Átszorozva \sqrt {sT}-vel és beírva a Heron-képletet (T = \sqrt{s(s-a)(s-b)(s-c)}), azt kapjuk, hogy

a\sqrt{s(s-a)}+b\sqrt{s(s-b)}+c\sqrt{s(s-c)} \geq 6\sqrt{s(s-a)(s-b)(s-c)}

Legyen most x:=s-a, y:=s-b, z:=s-c. Ekkor a=y+z, b=x+z, c=y+z. T-vel leosztva, és ezeket beírva:

\frac{y+z}{\sqrt{yz}}+\frac{x+z}{\sqrt{xz}}+\frac{x+y}{\sqrt{xy}} \geq 6

És ez igaz, mert minden tag legalább 2, hiszen minden x-re x+1/x\geq2, így az első tag is:

\frac{\sqrt y}{\sqrt z} + \frac{\sqrt z}{\sqrt y} \geq 2

Előzmény: [783] komalboy, 2009-02-13 10:16:19
[784] matlány2009-02-13 10:34:23

Sakkmath!

Tényleg vázlatos, amit Ön leírt. Esetleg le tudná írni bővebben, mert érdekel ennek a megoldása. Előre is köszönöm.

[783] komalboy2009-02-13 10:16:19

Egy másik érdekes feladat. :)

[782] komalboy2009-02-12 21:24:01

köszönöm a megoldást. :D

[781] vihand2009-02-12 20:20:55

Utólag is köszönöm.

[780] MTM2009-02-12 19:16:49

Csak úgy...:]

A feladat: C. 593. Péter a bélyeggyűjteményéből az 1,2,3,...,37 forintos bélyegek mindegyikéből kivett egy-egy darabot. Szeretné ezeket úgy csoportosítani, hogy mindegyik csoportban ugyanannyi legyen a bélyegek névértékének összege. Hányféleképpen teheti ezt meg?

Minta a dolgozatok fejlécéhez C. 593. Nagy 163 Róbert 9. évf. Győr, Révai M. Gimn. e-mail: robi@revai.hu

Jelöljük a kapitány életkorát (években kifejezve) K-val, a hajóét H-val. A hajó H-K évvel ezelőtt volt annyi idős, mint a kapitány most; akkor a kapitány K-(H-K)=2K-H éves volt. Amikor a hajó 2K-H éves lesz, akkor a kapitány ...

Előzmény: [779] rizsesz, 2009-02-12 19:02:06
[779] rizsesz2009-02-12 19:02:06

http://www.komal.hu/verseny/2008-09/kiiras.h.shtml

szinte majdnem a végén megtalálod.

Előzmény: [778] vihand, 2009-02-12 18:53:17
[778] vihand2009-02-12 18:53:17

Helló, valaki meg tudja nekem röviden írni, hogy hogy kell kinéznie egy kísérőjegyzéknek? Sajnos elhagytam az első újságot, és eddig abból néztem ki. Nem sürgős, de örülnék neki. Előre is köszönöm a segítséget.

[777] sakkmath2009-02-12 13:31:34

Vázlatosan:

1) Az első egyenlet értelmezése.

2) Egy adott helyettesítéssel felírhatjuk a konvex függvényekre vonatkozó Jensen-egyenlőtlenséget.

3) A számtani - mértani közép összefüggésének kétszeri alkalmazása.

4) Az első pontban kapott eredménnyel kijön a megoldás.

Előzmény: [776] komalboy, 2009-02-12 10:57:31
[776] komalboy2009-02-12 10:57:31

Sziasztok! a követekző feladatra keresek megoldást...

[775] Káli gúla2009-02-04 01:05:43

Bocsánat, az egyenlőtlenségsor csak az x<y<1 esetre megy.

Előzmény: [774] Káli gúla, 2009-02-03 23:29:12
[774] Káli gúla2009-02-03 23:29:12

Tegyük fel, hogy x<y, ekkor az X=1/x és Y=1/y jelöléssel \matrix{X^y>Y^x}, és ugyanezért \matrix{X^{X^y}>Y^{Y^x}}. Először az oldalak reciprokát véve \matrix{x^{X^y}<y^{Y^x}}, majd mindkét oldalt \matrix{x^y y^x}-adik hatványra emelve \matrix{x^{y^x}<y^{x^y}} adódik. Vagyis a torony akkor nagyobb, ha a nagyobbik számról indul

Előzmény: [765] BohnerGéza, 2009-01-30 22:31:08
[773] Ágoston2009-02-03 19:10:14

Nagyon köszi, hát erre nem jöttem rá...

Előzmény: [769] jenei.attila, 2009-02-02 21:32:36
[772] Bocsa Dávid2009-02-03 16:48:07

Nagyon szép megoldás:D Köszönöm szépen. Ha esetleg tud vki másik megoldást, akkor ossza meg velem, mert tudomásom szerint több módon is bizonyítható, de egészen eddig egyre sem jöttem rá. Még egyszer köszönöm.

[771] HoA2009-02-03 12:55:41

Legyen az ABC \Delta körülírt körének P pontjából az a oldalra bocsátott merőleges talppontja Ta, a b oldalra bocsátott merőleges talppontja Tb, a körrel alkotott második metszéspontja S. A B-ből induló magasság és a körülírt kör második metszéspontja R. Az s Simson egyenes P-ből vett kéteszeres nagyítása a t egyenes, ennek metszéspontjai BR-rel M, PS-sel N. PCTaTb húrnégyszög, mert Ta és Tb PC Thálesz-körén vannak. PC Ta = PCB szög egyenlő a Tb -nél lévő külső szöggel. PCB és PSB szögek is egyenlők, mint a PB húrhoz tartozó kerületi szögek. Végül s és t egyenesek párhuzamossága miatt PNM szög is az előbbiekkel egyenlő. PRBS szimmetrikus trapéz, mint a körből két párhuzamos húr által kimetszett négyszög. Az N-nél ill. S-nél lévő szögek egyenlősége miatt NPRM is szimmetrikus trapéz. t definíciója miatt PTb=TbN, a PN-re merőleges AC tehát NPRM szimmetriatengelye, így R és M egymás tükörképei AC-re. Mivel a magasságpont oldalegyenesre vett tükörképe a körülírt körön van, M az ABC \Delta magasságpontja. t definíciója miatt t minden Q pontjára igaz, hogy a QP felezőpontja s-en van, így természetesen M-re is.

Előzmény: [770] Bocsa Dávid, 2009-02-02 21:38:36
[770] Bocsa Dávid2009-02-02 21:38:36

Bizonyítsuk be, hogy a Simson-egyenes felezi az MP szakaszt, ahol M a háromszög magasságpontja és P a Simson egyenes P pontja a háromszög körülírt körének körívén. Vki ötlet?

[769] jenei.attila2009-02-02 21:32:36

Ha az adott pont 2 egységnél közelebb van a tengelyhez, akkor könnyű dolgod van. Egyszerűen ráilleszted a körlap szélét a tükrözendő P pontra úgy, hogy a körvonal két pontban metssze a tengelyt. Megjelölöd ezt a két pontot, majd a körlap szélét úgy illeszted ezekre, hogy most az előző helyzethez képest a tengelyre szimmetrikusan helyezkedjen el a körlap, majd körberajzolod a körlapot (a tengelyen kijelölt egymáshoz két egységnél közelebbi pontokra kétféleképpen-tengelyszimmetrikusan-illeszthető a körvonal). Ugyanezt megcsinálod mégegyszer úgy, hogy most az körvonal másik két pontban metssze a tengelyt. A körlap körberajzolásával adódó két körvonal metszéspontja a tengely másik oldalán megadja P tükörképét. Ha 2 egységnél távolabb van P a tengelytől, akkor segéd tengelyeket vehetsz fel úgy, hogy azok az eredeti tengely egy pontján menjenek át. A segédtengelyeket a fent leírt módon tükrözheted az eredeti tengelyre. Így az eredeti tengellyel együtt páratlan sok egy ponton átmenő tengelyed lesz, amelyekre sorban elvégezve a tükrözéseket (először a P-hez legközelebbi tengelyre türözve, majd továbbtükrözve a következő tengelyre, stb.) páratlan sok tükrözés után megkapod P tükörképét.

Előzmény: [768] Ágoston, 2009-02-02 20:22:25
[768] Ágoston2009-02-02 20:22:25

Adott a síkon egy pont és egy egyenes. Körző használata nélkül szerkesszük meg a pontnak az egyenesre vonatkozó tükörképét. Használhatunk egyenes vonalzót a szokásos módon és egy egységsugarú körlapot, aminek nem ismerjük a középpontját. Ez utóbbit körvonalzóként használhatjuk, vagyis a síkon adott ponton, illetve pontokon átmenő egységsugarú körvonalakat tudunk rajzolni, de a középpontokat nem tudjuk bejelölni.

Valaki tudja a fenti feladatra a megoldást? Köszönöm

[767] Tibixe2009-01-31 11:06:04

Közben leesett, hogy amit tegnap írtam, az elég nagy hülyeség... Bocsássatok meg, elég álmos lehettem.

[766] Tibixe2009-01-30 23:19:16

Amit nekem sikerült, röviden:

Egy d=q-p behelyettesítés, utána a (p+d)p binomiális tételes kibontása, utána az egész szerencsétlenség leosztása pp+d-vel. Amit kapunk, az éppen a

\big( \frac{d}{p} + 1 \big) ^p

kibontott alakja lesz. Na ennek kéne 1-gyel egyenlőnek lennie. Tehát

\frac{d}{p}+1=1

( esetleg -1, de az gyorsan kizárható ), innen pedig

d=0

.

[765] BohnerGéza2009-01-30 22:31:08

Ez Arany D. versenyfeladat volt. Hogyan oldható meg logaritmus nélkül?

Előzmény: [761] Tibixe, 2009-01-30 16:26:18
[764] Tibixe2009-01-30 20:14:52

Úgy látszik eltér a humorérzékünk.

[763] nadorp2009-01-30 19:24:28

Köszi az építő megjegyzést, azért nem kell mindjárt leszedni az emberről a keresztvizet egy egyébként jó és nem bonyolult megoldás miatt ( lásd hentes) :-( Egyébként a számelmélet tele van analízist is tartalmazó bizonyítással,ezért nem értek Veled egyet teljesen. Én a pozitív egészeknek azt a tulajdonságát használtam, hogy számtani sorozatot alkotnak, Te meg a számelmélet alaptételét. Mindkettő jó. Ennyi.

Előzmény: [761] Tibixe, 2009-01-30 16:26:18
[762] Tibixe2009-01-30 16:36:04

Hoppá,

sut\getus

helyett

sut\letus

-et akartam írni.

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]