|
[805] laci777 | 2009-02-19 16:29:02 |
 Sziasztok! Most egy már megoldott(?) versenypéldával kapcsolatban kérném szépen véleményeteket.
Vegyük a köv. egyenletet: a2+b2-ab=c2 (ahol a,b,c páronként különböző pozitív valósak). A feladat: fel kell írni növekvő sorrendben a számokat. Arra jutottam, hogy egy olyan háromszög oldalairól van szó, ahol - a koszinusztétel miatt - a c oldallal szembeni szög 60 fok, és a<c<b vagy b<c<a. Ugyanakkor végtelen sok számhármas kielégíti a feltételeket (pl. 1, 2, gyökhárom ill. ezek tetszőleges k-szorosa hasonló derékszögű háromszögek esetén, és akkor még ott van végtelen sok egyéb lehetőség, ahol alfa és béta együtt 120 fok). De - ha minden igaz - ez nem jó (nem teljes?) megoldás. De miért? Tényleg szeretném tudni.
|
|
[804] sakkmath | 2009-02-17 13:20:30 |
 Örülök, hogy a rajzoddal talpra állítottál, az újbóli fejreállást egy tengelyes tükrözéssel megoldom :))
Az adott tulajdonságú pontok halmaza egy negyedrendrendű algebrai görbe (a rajzodon még két további metszéspont is bejelölhető...), melynek egyenlete - Descartes-koordinátarendszerben - implicit és explicit módon is megadható... (Utóbbi esetben a görbét több, csatlakozó ívre kell bontani.)
Egykor hosszas nyomozást folytattam annak megállapítására, hogy hol, mikor fedezték fel ezt a görbét. Az eredmény: a trifolium (lóhere) nevű görbecsalád egy speciális esetéről van szó (legalábbis ezt írta a Encyclopedia Britannica ). Az általánosabb főgörbé(ke)t egyébként nem az általam talált szerkesztéssel definiálták.
Bebizonyítható, hogy a görbe által határolt terület kétszerese a kiindulási kör területének. Nekem ez "csak" integrálszámítással sikerült. Kérdés: van-e erre egy elegánsabb módszer?
A görbével kapcsolatban több egyéb kérdés is feltehető és megválaszolható. Pl.: súlypontok, megforgatással kapott test térfogata, stb. A K kerület viszont ellenállt, ez szerintem csak közelítő módszerekkel határozható meg. Nálam K/a 14,1666.
|
Előzmény: [802] BohnerGéza, 2009-02-16 19:48:30 |
|
[803] HoA | 2009-02-17 12:53:30 |
 [757] ábrája arra utal, hogy használjuk fel: a háromszög beírt körének középpontja rajta van például a b oldal /2+ /2 látószögű körívén és az ehhez a körívhez tartozó körközéppont éppen a körülírt kör b-hez tartozó, B-t nem tartalmazó ivének felezőpontja, ahol szögfelezője is metszi a körülírt kört. Az itt mellékelt ábra jelöléseivel EA=EO2 egyenlőséget közvetlenül is beláthatjuk. Legyenek az ABD háromszög szögei , , . Ekkor AEB = ( BA húrhoz tartozó kerületi szög ), DAE = DBE = /2,O2 AD = /2,O2 AE = /2+ /2 és így EAO2 háromszög O2 -nél lévő EO2A szöge is /2+ /2 , EAO2 egyenlőszárú, EA=EO2 . Ugyanez igaz EO1-re is, így O1EO2 egyenlőszárú.
Csak most használjuk fel, hogy egységsugarú körülírt körről és derékszögű ABD háromszögről van szó: Az feltétel tehát azt jelenti, hogy O1EO2 szabályos, O2EO1 =60o , BC az egységsugarú körben 60o-os kerületi szöghöz tartozó húr, hossza így
A gondolatmenet megfordítható, ha , akkor BEC =O2EO1 =60o , O1EO2 egyenlőszárú szabályos,
|
 |
Előzmény: [757] BohnerGéza, 2009-01-24 16:31:35 |
|
|
[801] sakkmath | 2009-02-16 10:19:18 |
 Ugyanez a kiinduló kör szerepel a következő feladatban is:
Adott az A(0; a) középpontú, a sugarú kör. A kör valamely - az origótól különböző - pontja legyen C. Tekintsük azokat a C-felezéspontú, OA-val párhuzamos szakaszokat, melyek hossza 2OC. Kérdések:
1. Mi a szakaszvégpontok mértani helye, ha C befutja a kört? 2. Mekkora területet zár be a mértani helyet leíró függvény görbéje? 3. Honnan lehet ismerős a kapott görbe? :)
|
Előzmény: [795] HoA, 2009-02-15 07:45:55 |
|
|
[799] nadorp | 2009-02-15 14:17:47 |
 2. megoldás
miatt a számtani és harmonikus közép közti egyenlőtlenségből
, tehát
Most felhasználva a mértani és harmonikus közép közti egyenlőtlenséget

|
Előzmény: [798] S.Ákos, 2009-02-15 13:56:02 |
|
[798] S.Ákos | 2009-02-15 13:56:02 |
 Legyen a+b=2p és a-b=2q, ahol a,b,p,q pozitív valós számok. Vizsgáljuk az kifejezést. a=p+q és b=p-q. Ezekkel a helyettesítésekkel:

Ha 2p állandó, akkor ez a kifejezés szigorúan monoton nő a [0;p] intervallumon, ha tehát q csökken, akkor a kifejezés értéke is csökken. Ha a számok mind egyenlők, akkor . Ha nem mind egyenlők, akkor van i,j úgy, hogy Legyen és , és a többi xk-t hagyjuk változatlanul. Mivel xi+xj=xi'+xj' és xi>xj'>xj, ezért xi>xi'>xj, így xi-xj>|xj'-xi'|, így a kifejezés értéke csökkent, így a minimum csak x1=x2=...=xn esetén állhat, ami épp a jobb oldal.
Remélem érthető.
|
Előzmény: [797] Gyöngyő, 2009-02-15 12:21:18 |
|
[797] Gyöngyő | 2009-02-15 12:21:18 |
 Sziasztok!
Szeretnék segítséget kérni a következő feladathoz:
Legyenek xi>0,i=1,..,n
x1+x2+...+xn=1. Igazoljuk,hogy :
Üdv.: Gyöngyő
|
|
[796] laci777 | 2009-02-15 11:20:46 |
 Kedves HoA!
Az első megoldásod egyszerű, és így nagyszerű:) A második viszont - a magam szinjéhez képest meg végképp -remekmű. Mindkettőt köszönöm!
|
Előzmény: [795] HoA, 2009-02-15 07:45:55 |
|
[795] HoA | 2009-02-15 07:45:55 |
 Legyen a (0;a) pont A, a (0;-a) pont B, a PQO magasságpontja M. AQ és OM párhuzamosak, mint PQ-ra merőleges egyenesek. AO és QM párhuzamosak, mint PO-ra merőleges egyenesek. Így OMQA paralellogramma és AO = AQ ( a kör sugara ) miatt rombusz. Átlói merőlegesek, középpontját K-val jelölve AKO derékszögű. Ezt A-ból kétszeresére nagyítva K M-be O pedig B-be kerül. AMB derékszögű, tehát M valóban AB Thálesz-körén van.
Mivel a feladatot koordináta-geometriai megfogalmazásban tűzték ki, oldjuk meg így is. Legyen P (p;0). Q az AP átmérőjű körön van, ennek középpontja (p/2;a/2), sugara , egyenlete (x-p/2)2+(y-a/2)2=1/4(p2+a2) , (2x-p)2+(2y-a)2=p2+a2 ; 4x2-4xp+p2+4y2-4ya+a2=p2+a2 ;
4x2-4xp+4y2-4ya=0
Q az eredeti körön is rajta van, ennek egyenletét néggyel szorozva 4x2+4(y-a)2=4a2 ; 4x2+4y2-8ay+4a2=4a2 ;
4x2+4y2-8ay=0
A két egyenlet különbségéből a metszéspontokra y/x = p/a ( amit persze az ábráról mint OQ meredekségét könnyen leolvashatunk) , behelyettesítve 4x2+4p2x2/a2-8px=0 Egyik metszéspont az origó, erre nem vagyunk kíváncsiak, x-szel oszthatunk: x(4+4p2/a2)=8p ; x=2p/(1+p2/a2) Ez tehát Q és egyben M abszcisszája (Mx). M ordinátáját (My) abból számíthatjuk, hogy M rajta van az AP egyenesen: x/p+y/a=1 ; y=a-(a/p)x=a-2a/(1+p2/a2)=(a+p2/a-2a)/(1+p2/a2)=(p2/a-a)/(1+p2/a2) . Tekintsük az Mx2+My2 kifejezést:
M tehát valóban az origó középpontú a sugarú körön, AB Thálesz körén van.
|
 |
Előzmény: [794] laci777, 2009-02-14 22:35:15 |
|
[794] laci777 | 2009-02-14 22:35:15 |
 Megint geometria-példában kérnék szépen segítséget: vegyük az x2+(y-a)2=a2 egyenletű kört (az "a" tetszőleges, de rögzített értékű pozitív valós szám). E körhöz az x tengely egy tetszőleges P pontjából érintőt húzunk (nem az origóba). Ezt az érintési pontot Q-val jelölve,határozzuk meg a PQO(O az origo) háromszög magasságpontját. Ha végighaladunk x tengely valamennyi P pontján, mit adnak ki e háromszögek magasságpontjai? Az látszik, hogy a (0;a) és a (0;-a) pontok által meghatározott szakasz Thalész-köre a megoldás a két előbbi pont nélkül - de bizonyítani már nem tudom. Tudna valaki valamilyen kiinduló pontot, ötletet javasolni? Köszönöm előre is.
|
|
|
|
|
[790] laci777 | 2009-02-13 22:31:43 |
 Ajjaj, már látom, s(c) és c metszésére tükrözzük C-t, így kapjuk a paralelogrammát. Késő van, egyébként is lassú vagyok:(
Még egyszer köszönöm, kellemes hétvégét.
|
|
[789] laci777 | 2009-02-13 22:18:34 |
 Kedves Euler, köszönöm szépen, érthető voltál - azt hiszem, a 3szög súlyvonalára az oldalai függvényében adott képletre az életben nem jöttem volna magamtól rá (más kérdés, még most sem nagyon látom az s(c) és az m(c) c-n való távolságának számíthatóságát - de kicsit még emésztem). Még egyszer köszönöm.
|
Előzmény: [788] Euler, 2009-02-13 18:17:09 |
|
[788] Euler | 2009-02-13 18:17:09 |
 Paralelogrammára igaz az összefüggés, igy innen adódik, hogy egy háromszög súlyvonala kiszámolható a következő módon: 4sc2=2a2+2b2-c2(csúnya, de remélem érthető). Jelöljük a négyszög csúcsait rendre A, B, C, D-vel, AC felezőpontja E, BD felezőpontja F, ekkor4EF2=2CF2+2AF2-AC2, hasonlóan CF2 és AF2 kifejezhető a DBC és DAB háromszögekből, ezekat beirva az előbbibe már adódik is az állitás. Remélem érthetően sikerült leirnom.
|
Előzmény: [786] laci777, 2009-02-13 15:21:23 |
|
|
[786] laci777 | 2009-02-13 15:21:23 |
 Üdvözlet Mindenkinek!
Egy 11.-es versenyfeladat így szól: bizonyítsuk be, hogy tetszőleges konvex négyszög oldalai négyzetösszegéből annak átlói négyzetösszegét kivonva az átlók felezőit összekötő szakasz négyzetének négyszeresét kapjuk.
Megköszönnék bármilyen kiinduló pontot, gondolatot. Eddig még csak az oldal szakaszfelelők által meghatározott paralelogrammával próbálkoztam, de nem sok sikerrel (vagy nem elég kitartóan). Csak annyit tudok, hogy ez az állítás paralelogrammák esetén igaz.
Köszönöm előre is.
|
|
[785] Sirpi | 2009-02-13 14:49:29 |
 Ismert, hogy T=s.r=(s-a).ra=(s-b).rb=(s-c).rc
Helyettesítsük be az r-eket a bizonyítandó egyenlőségbe:

Átszorozva -vel és beírva a Heron-képletet ( ), azt kapjuk, hogy

Legyen most x:=s-a, y:=s-b, z:=s-c. Ekkor a=y+z, b=x+z, c=y+z. T-vel leosztva, és ezeket beírva:

És ez igaz, mert minden tag legalább 2, hiszen minden x-re x+1/x 2, így az első tag is:

|
Előzmény: [783] komalboy, 2009-02-13 10:16:19 |
|
[784] matlány | 2009-02-13 10:34:23 |
 Sakkmath!
Tényleg vázlatos, amit Ön leírt. Esetleg le tudná írni bővebben, mert érdekel ennek a megoldása. Előre is köszönöm.
|
|
|
|