[316] epsilon | 2008-03-03 16:23:32 |
Helló nadorp! Ne haragudj, de többvalami elkerülte a figyelmedet: 1) Lennebb beidézem a kiinduló feladatot, és ott meglátod miről van szó! 2) A rekurzióban teljesen mindegy, hogy n-et vagy k-t írunk, nem de? 3) Az aránypárok tulajdonságát használtam, és az a(n+2) alá hoztam az egyik a(n+1)-et, és a jobboldalon a nevezőbe vittem az ottmaradt a(n+1) alá az a(n)-et. 4) Ha tehát a(n+1)/a(n) a jobboldalon b(n)-el lett jelölve, akkor a baloldalon a(n+2)/a(n+1) egyértelműen b(n+1). Aztán a teljes rekurziót átírtam n helyett k-ra, és az (1+1/k)-nek az k-adik hatványát e(k)-val jelöltem, és a kapot, általad beidézett rekurzió szerintem teljesen igaz. 5) Az általad kihozott 0 erdménysajnos 101 százalékban HIBÁS, a feladatnál jeleztem, hogy melyik a helyes válasz, a könyvet majdnem mind ilyen feladatokkal állították össze, sok minden látszatra úgy tűnik, hogy jó, de a helyes válasz nem az. Ismételem, a helyes válasz az (E) erre mérget lehet venni, íme mégegyszer a feladat, és kösz, hogy foglalkozol vele. Még van egy pár tucat ilyen, feladat, ami látszatra másnak tűnik, mint ami a helyes válasz! Üdv: epsilon.
|
|
|
[315] nadorp | 2008-03-03 11:21:29 |
Ne haragudj, de szerintem már a kiindulási új rekurzió is rossz. Nem értem, hogy jött ki a bk+1=ek.bk
Különben, ha létezik, akkor az csak 1 lehet, ui. a rekurzióból
Tehát
|
Előzmény: [312] epsilon, 2008-03-02 08:52:36 |
|
[314] epsilon | 2008-03-02 09:15:39 |
Vajon ez már jó megoldás lenne:
|
|
|
[313] epsilon | 2008-03-02 08:53:27 |
A p>=2 helyett k>=2 kell ( a képben már nem javítottam ki)
|
|
[312] epsilon | 2008-03-02 08:52:36 |
Keves Lajos! Más irányból közelítettem meg a feladatot, és az kiderült, hogy a két kezdetérték nem befolyásolja a limeszt:
|
|
|
[311] epsilon | 2008-03-02 07:59:00 |
A 304-es hsz kapcsán: ha egy limeszt többféle képpen helyesen számolunk ki, akkor nem lehet különböző eredménye, de nagyon negéz eldönteni, hogy most a többféle eredmény alapján azért a "más válasz" a helyes, mert többféle eremény jött ki helyesen? vagy ??? Azzal egyetértek, hogy a kezdetértékek befolyásolják a limeszt, éppen ezért az eredeti rekurziót logaritmáltam, így egy 2-ik rendű nemhomogén rekurzió jött létre, a homogén egyenletnek dupla gyöke van, valóban a kezdetértékek bennemaradnak a szokásos 2 paraméter meghatározásában, de egyenlőre még az ebből adódó limesz kiszámolásával, nem jutottam dűlőre. Más ötletem az volt, hogy a b(n)-ben levő rekurzióban, lévén, hogy egymásutáni tagokról van szó (a két oldalon), összeszorozva, az a(n) sorozat általános tagját megkaptam, de az L kiszámolásával elakadtam :-( Szóval eléggé ingoványos talajokra is jutottam. üdv: epsilon
|
|
[310] epsilon | 2008-03-02 07:53:16 |
Megint más, noha látható, hogy a b(n) sorozat növekvő, és limesze nem lehet 0:
|
|
|
[309] epsilon | 2008-03-02 07:48:39 |
Ugyancsak ez jön ki a következő képpen, ha S-C és a (*) együttes alkalmazását végzem, de itt a "részleges határértékre térés" szerintem már nem mondható (?)
|
|
|
[308] epsilon | 2008-03-02 07:38:15 |
Helló! Mivel csak MathType-ban dolgozok, és a képlopóval a képek mérete meghaladja a megengedettet, ezért részletekben írok. A legtöbb valószínűséggel a határértéknek az e értéket tulasdonítanám, noha a következő bizonyításban a "részleges határértékre térés" vitatott lehet, ami miatt az eredmény is.
|
|
|
[307] epsilon | 2008-03-02 06:48:08 |
Kedves Lajos! Teljesen egyetértek a 305-ös észrevételeddel, éppen a 2a-1=2a+1 absurdum jött ki (amikor a deriválhatóságot említettem), és ezek szerint akkor mégis miért állhat a jelzett válasz, hogy pont 2 a érték van amelyre konvex? Természetesen MINDEN feladat esetén PONTOSAN 1 válasz helyes, és az biztosan helyes. A 304-es észrevételedre és eredményeimre visszatérek, megírom a saját számolásaimat, mert túl szép, és érdekesnek tűnik az egész feladat. Kösz, hogy foglalkoztál vele! Üdv: epsilon
|
Előzmény: [305] Lóczi Lajos, 2008-03-02 00:45:31 |
|
|
[305] Lóczi Lajos | 2008-03-02 00:45:31 |
Ha a(0,1) a nyílt intervallumban van, akkor f nem deriválható x=a-ban, mert a két félérintő különböző szöget zár be: a balérintő meredeksége 2a+1, míg a jobbérintőé 2a-1. A balérintő mindig pozitív meredekségű és meredekebb, mint a jobbérintő. A függvény tehát nem lehet konvex.
|
Előzmény: [303] epsilon, 2008-03-01 21:28:00 |
|
[304] Lóczi Lajos | 2008-03-01 23:49:03 |
Az A-E-s tesztben ugye csak 1 helyes megoldást karikázhatunk be? (Számolás nélkül) azt gondoltam, hogy az a2, a3 kezdőértékek alkalmas megválasztásával többféle limesz is kihozható, tehát a végeredmény nem egyértelmű, ezért E. Te milyen lehetséges értékekek kapsz?
|
Előzmény: [303] epsilon, 2008-03-01 21:28:00 |
|
[303] epsilon | 2008-03-01 21:28:00 |
Köszi Lajos! 1) A 297 feladat esetén azért gondoltam a deriváltra, mert egyik értelmezése az alulról konvexnek az, hogy a [0,1] intervallumon a függvény bármely pontjában húzott érintő a függvény ábra alatt van. és a derivált mértani jelentése alapján arra is gondoltam.Az a=0 és a=1 valóban az, de a helyes válasz az, hogy PONTOSAN 2 megoldás, tehát maradna, miért nincs más "a" érték? 2)A 298 esetén nem értem a kérdve kifejtett "válaszod", szóval ott a megoldókulcs alapján az (E) a helyes, de ...mint írtam, Én ki tudok hozni eredményeket a nem helyesek kötül, és...nem látom a tévedést, tehát érdekelne: MIÉRT az (E) válasz a helyes? Vagyis mi a helyzet azzal a limesszel, mennyi, vagy nem létezik? 3) A 299 esetén Én néztem el a válasznak megjelölt betűt! Üdv: epsilon
|
Előzmény: [302] Lóczi Lajos, 2008-03-01 19:30:01 |
|
|
|
|
[299] epsilon | 2008-03-01 19:03:57 |
Sziasztok! Egy harmadik feladat ([a] az a szám egészrésze):
|
|
|
[298] epsilon | 2008-03-01 18:58:05 |
Sziasztok! Egy második szép feladat:
|
|
|
[297] epsilon | 2008-03-01 18:48:18 |
Sziasztok! Megint jelentkezem egy számomra nem egyértelmű feladattal. A következő feladatban azon "a" paraméterek számát kérdik, amelyekre az f(x) függvény konvex a [0,1]-en. A válasz az, hogy 2 ilyen érték van, Én meg vagy 1-et, vagy 0-át találok, aszerint, hogy azt vizsgálom, hogy a függvény folytonos kell legyen, meg a deriváltja is.Nektek mi a véleményetek? Előre is kösz! Üdv: epsilon
|
|
|
[296] Sirpi | 2008-02-19 20:52:46 |
Na, kigyötörtem. És amilyen egyszerű, olyan sokáig tartott. Az a (teljes indukciós) állítás, hogy n ember esetén mindig ki lehet megfelelően n-1 kérdést választani, hogy ezen a részhalmazon mindenki különböző választ adjon.
Kezdőlépés: n=1: nem kell kiválasztani egyik kérdést sem
n=2: Ilyenkor nyilván van olyan kérdés, aminél eltér a válasz, válasszuk azt.
Indukciós lépés (nn+1): válasszunk egy olyan kérdést, amire nem adta mindenki ugyanazt a választ (ilyen van, különben mindenkinek minden kérdésre azonos választ kellett adnia, ami lehetetlen). A válaszok szerint bontsuk csoportokra az embereket - az azonos választ adók kerülnek egy csoportba. Nem kell feltenni, hogy csak kétféle (pl. igen-nem) válasz adható. Az előző megjegyzés szerint legalább két csoport lesz. Álljanak a csoportok a1,a2,...,ak emberből. A csoportokra alkalmazzuk az indukciós feltevést, és ilyenkor (létszám-1) tesztkérdés kiválasztható az adott csoporthoz, ezeket összeadva kijön, hogy összességében elég 1+(a1-1)+...+(ak-1) tesztkérdés, ami k2 miatt legfeljebb n-1. Ha legalább 3 csoport van, akkor ennél kevesebb is elég.
----
Van olyan elrendezés, amihez kell is ennyi kérdés, pl. ha a k. ember csak a k. kérdést rontja el. Ilyenkor az első 20 kérdésből muszáj 19-et kiválasztanunk, hogy azok alapján különbözzenek a tanulók.
(Bocs, ha nem teljesen érthető minden, kicsit gyorsan írtam.)
|
Előzmény: [295] komalboy, 2008-02-18 16:38:17 |
|
[295] komalboy | 2008-02-18 16:38:17 |
Egy kis verseny-feladat... : Egy vállalat a hozzá jelentkezőket egy 25 pontból álló teszttel vizsgálja. A legfrissebben meghiretett állásra 20 fő jelentkezett, kinek a teszteredményei mind különbözőek, semelyik kettő sem azonos teljesen. Mutassuk meg, hogy kiválasztható 19 tesztkérdés úgy, hogy a 20 teszt közül bármely kettő között lesz eltérés ezen 19 kérdés alapján is.
|
|
|
|
[292] Sirpi | 2008-02-15 11:50:48 |
Kicsit kavar van itt... Egyrészt "a két átlóval bezárt szög" helyett nem azt akartad írni, hogy "a két átló bezárt szöge"? Mert ha a két átló bezárt szöge 60o, akkor a koszinusztételből és abból, hogy az átlók felezik egymást, következik, hogy:
a2=(e/2)2+(f/2)2-2.e/2.f/2.cos 60o
b2=(e/2)2+(f/2)2-2.e/2.f/2.cos 120o
Vagyis:
Amúgy pedig a köv. hozzászólásban említett "átlók négyetösszege egyenlő az oldalak négyzetösszegével" helyesen úgy hangzik, hogy e2+f2=2a2+2b2
|
Előzmény: [290] gele_viki, 2008-02-14 20:15:54 |
|