Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]  

Szeretnél hozzászólni? Jelentkezz be.
[432] Káli gúla2008-04-08 19:27:42

A tört reciproka egyszerűbb függvény, a képe egy hiperbola lesz az  y = -x-1 és az x=1 aszimptotákkal. Ha a>0, akkor a tompaszögű tartományban van a függvény és semmilyen értéket nem hagy ki. Ha a<0, akkor az y=-2 egyenesre szimmetrikus sávon kívül halad. Annak, hogy ez a reciprok függvény egy adott k értéket ne vegyen fel, az a feltétele, hogy az 1-x2+a=k(x-1) egyenletnek ne legyen megoldása, azaz a diszkrimináns d=k2+4(k+1+a)=(k+2)2+4a<0 legyen, tehát a<-\frac{(k+2)^2}{4}. Ez akár a -1-gyel, akár a -3-mal pont azt adja, amit cauchy írt. Ahogy a-val tartunk a 0-hoz, úgy fog a hiperbola "hegyesedni", és ezért belemetszeni az y=-1 és y=-3 közötti sávba. (A hiperbolára azért érdemes nézni, hogy elhiggyük azt, amit számolunk:)

Előzmény: [431] epsilon, 2008-04-08 17:51:29
[431] epsilon2008-04-08 17:51:29

Helló! Én úgy próbáltam, hogy ne vegyen fel értékeket a [-1;-1/3] intervallumból, akkor f(x)<-1 vagy f(x)>-1/3 minden x valós szám esetén, aztán egy-egy törtet kaptam, amelyek másodfokú függvényeket tartalmaznak, ás próbáltam a diszkrimináns < 0 feltételeket, a baloldaliból jött ki eredmény, a jobboldaliból nem, de sejtem is a hibát: az f(x)<-1 nem muszáj MINDEN x-re fennáljon, amikor pl. ez nem áll fenn, azon x-re álljon fenn az f(x)>-1/3...tehát nem tudom, hogy a d<0 feltétellel egyáltalán lehetne-e valamit kezdeni. Nézem, a függvány monotonítását, onnan semmi, egyenlővé tettem y-nal és x-ben másodfokú egyenletnek valós megoldásai kell legyene, kaptam y-ra egyenlőtlenséget, vagyis képhalmazt...de ezt sem tudtam összhangba hozni az adott intervallummal..pedig a feladat nem tűnik komolynak, és mégis?!

Előzmény: [430] cauchy, 2008-04-08 15:51:53
[430] cauchy2008-04-08 15:51:53

Sajnos, empirikusan kerestem meg, és nem tudom, mi a módszer. :-( A tiédre tudnék ellenpéldát mondani, de az most lényegtelen.

Előzmény: [428] epsilon, 2008-04-08 09:10:51
[429] jonas2008-04-08 10:39:18

Igen. Hülye hiba volt.

Előzmény: [427] sakkmath, 2008-04-08 09:08:19
[428] epsilon2008-04-08 09:10:51

OK Cauchy, ez az eredmény, de Nekem csak az a<0 jön ki, valamit elveszítek :-( Ha a sejtésd bizonyítható, írhatnál egy pár támpontot! Előre is kösz, üdv: epsilon

Előzmény: [424] cauchy, 2008-04-07 21:27:29
[427] sakkmath2008-04-08 09:08:19

Feltéve, hogy x, y > 0, az azonosság helyesen: log(xy) = logx + logy.

Előzmény: [426] jonas, 2008-04-07 22:55:41
[426] jonas2008-04-07 22:55:41

Logaritmust a Taylor-sorral kell számolni, de úgy, hogy előbb leviszed a számot 1 közelébe (lehet fölötte vagy alatta) a log(xy)=logx.logy azonossággal, ahol y-nak ismered a logaritmusát. Ez számítógépnek praktikus, de ha kézzel akarsz logartimust számolni, általában a táblázat egyszerűbb.

Előzmény: [425] leni536, 2008-04-07 22:22:31
[425] leni5362008-04-07 22:22:31

A gyökvonásra való módszer nagyon tetszik, már el is sajátítottam a "digit by digit"-et. Más függvényekre van módszer a Taylor-soron kívül? Raj lenne papíron logaritmust számolni. Amúgy ha egy fügvénynek könnyebben számoljuk az inverz függvényét és inverz függvényének a deriváltját, a függvény mindenhol konvex, vagy mindenhol konkáv, akkor az alábbi sorozat határértéke tart a függvényünk értékéhez az x0 helyen:

y_{n+1}=y_n+\frac{x_0-f^{-1}(y_n)}{f^{-1}'(y_n)}

Ebből ki is jön n. gyökre a babilóniai módszer.

Előzmény: [411] Sirpi, 2008-04-04 14:19:18
[424] cauchy2008-04-07 21:27:29

a < -\frac14

Még gondolkozom az indokláson.

Előzmény: [423] epsilon, 2008-04-07 19:41:32
[423] epsilon2008-04-07 19:41:32

Helló! Megint van egy kedves feladat, látszatra jámbor:

[422] csewe2008-04-07 19:39:53

kósz az ötleteket már kerezsgélem is a különböző szitaeljárásokat

sziasztok

Előzmény: [421] Sirpi, 2008-04-07 18:38:22
[421] Sirpi2008-04-07 18:38:22

Nem megy máshogy. A kettő teljesen ekvivalens: ha mondasz k-t és l-et, én megmondom x-et és y-t, és fordítva.

Ha nagy számokat akarsz felbontani, akkor amire rákereshetsz, mert sokkal jobban működnek, minthogy \sqrt n-ig megnézünk minden prímet, hogy osztja-e n-t:

Pollard \rho-módszere és Pollard p-1-módszere, vagy a kvadratikus szita. Mondjuk egyiket se lehet 10 sorban leprogramozni, szóval így állj hozzájuk.

Előzmény: [418] csewe, 2008-04-07 14:59:55
[419] rizsesz2008-04-07 15:14:17

Vagy euklideszi szitával.

Előzmény: [418] csewe, 2008-04-07 14:59:55
[418] csewe2008-04-07 14:59:55

tulajdonképpen amint látom nekem n - et fel kel lbontanom "fejben/papiron" két szám szorzatára.

akkor viszont nem igen jutottam elöbre , mert ez nagyob számoknál már gondot okozhat. nincs más megoldás?

mert n felbontása csak találgatással megy.

Előzmény: [420] Sirpi, 2008-04-07 13:42:32
[420] Sirpi2008-04-07 13:42:32

Oké, hogy csak páratlanra kell, de pl. a 10-et vagy a 42-t írd fel ilyen szorzat alakban, nem fog menni. Ahogy írtam, a 4-gyel oszthatók mennek, a csak 2-vel, de 4-gyel nem oszthatóak pedig nem.

Páratlanra meg úgy megy, ahogy írtam: n-et felbontod k.l-re, és innen x=\frac{k+l}2, y=\frac{k-l}2.

Példa: n=91=7.13, ekkor x=\frac{13+7}2=10, y=\frac{13-7}2=3, és tényleg: 91=(10+3).(10-3)

Előzmény: [417] csewe, 2008-04-07 12:50:16
[417] csewe2008-04-07 12:50:16

ismételten bocs

amire én használnám,ott

n mindíg páratlan pozitív egész

de nem értem miért nem lehet párosra felbontani hiszen

ha behejettesítem,akkor van olyan eset is

(6 + 2) * (6 - 2) = 32

de végül is ez mindegy mert nekem kimondottan páratlan

n - re kell a megoldás

a levezetést értem "azt hiszem", de még mindíg nem tudom

számszerüsíteni.

Előzmény: [416] Sirpi, 2008-04-07 10:31:03
[416] Sirpi2008-04-07 10:31:03

Igazából az előző kérdésed után most nem vagyok egész biztos abban, hogy mire is vagy kíváncsi :-)

Ennek a feladatnak két része van, egy bazinehéz, meg egy könnyű. A bazinehéz az, hogy hogy bontsuk fel n-et két szám szorzatára (na jó, mondjuk tizensok jegytől tud ez már problémás lenni). Mivel x+y és x-y paritása azonos, ezért vagy mindkettő páros, vagy mindkettő páratlan. így n-et két azonos paritású szám szorzatára kell felbontani. Ha n páratlan, akkor nem is lehet máshogy, viszont ha n páros, akkor két páros szorzatára kell (egy 4k+2 alakú számot nem lehet így felbontani).

Ha ez megvan, vagyis n=k.l, ahol k\geql, akkor x+y=k, x-y=l, és innen triviálisan x=\frac{k+l}2, y=\frac{k-l}2.

Előzmény: [415] csewe, 2008-04-07 05:35:20
[415] csewe2008-04-07 05:35:20

bocs de azt hiszem nem jól adtam meg az értéktartományt

x és y értéktartománya

2 < x , x pozitív egész

0 <= y < x - 2 , y pozitív egész

n pozitiv egész

talán így korrektebb

[414] csewe2008-04-06 18:26:23

heló mindenkinek

ismét segítséget kérnék

(x + y) * (x - y) = n

ha ezt valaki levezetné nekem nagyon megköszönném

n értékét mindíg ismerem x vagy y értékét kellene megállapítenom x és y értéktartománya 2 < x , 0 <= y

már egy napja lógok a neten hogy találjak valami mrgoldás,sőt előkotortam a régi matekkönyveimet is de semmire sem jutottam.

köszi

[413] rizsesz2008-04-04 16:14:51

szerintem Sirpi első válasza lett volna az, ami az eredeti kérdésre a helyes válasz kellett volna, hogy legyen.

Előzmény: [412] csewe, 2008-04-04 15:13:47
[412] csewe2008-04-04 15:13:47

mindenkinek kösz a segítséget a wikipédiás oldal angol,ugyhogy ez nálam kilőve

a gyökvonásból nemsokat értettem, mert éphogy hármas voltam matekból, és már az sem most volt

mivel ez az egyenlet amire itt megoldást kértem ,csupán a program gyorsítását szolgálta volna, így arra az elhatározásra jutottam, hogy más megoldást keresek

ti jók voltatok, csak ez már nekem magas

sziasztok

Előzmény: [411] Sirpi, 2008-04-04 14:19:18
[411] Sirpi2008-04-04 14:19:18

Rákerestem a wikipédián, itt van egy csomó módszer gyökvonásra.

Előzmény: [410] Róbert Gida, 2008-04-04 13:58:23
[410] Róbert Gida2008-04-04 13:58:23

Van egyébként osztásmentes verziója is a négyzetgyök kiszámolásának (ott szorozni kell). Továbbá a legjobb programok természetesen nem teljes pontossággal számolnak, mint te például 14 jeggyel, hanem mindig kb. megduplázzák az értékes jegyek számát az ak-ban.

Előzmény: [409] Sirpi, 2008-04-04 12:42:14
[409] Sirpi2008-04-04 12:42:14

Ha már felmerült a téma, és azt állítottam, hogy a pontos jegyek száma iterációs lépésenként duplázódik, akkor kicsit pontosítanék, meg bizonyítanám is az állításomat. Tehát a rekurzió a_{k+1}= \frac{a_k+n/a_k}2

A számtani-mértani közepek közti egyenlőtlenség szerint ez mindig legalább \sqrt{n}, így tegyük fel, hogy x=\sqrt{n}+c (tehát x-nek c(\geq0) a hibája), és nézzük meg, hogy x-re alkalmazva az iterációt, mekkora lesz a következő tag, azaz \frac{x+n/x}2 hibája.

\frac{x+n/x}2 - \sqrt n = \frac{\sqrt n + c + \frac n{\sqrt n + c}}2 - \sqrt n = \frac{-\sqrt n + c + \frac n{n-c^2} \cdot (\sqrt n - c)}2=

=\frac{(\frac{n}{n-c^2}-1)\cdot (\sqrt n - c)}2=\frac{\frac{c^2}{n-c^2}\cdot (\sqrt n - c)}2=\frac{c^2}{2(\sqrt n + c)}

Ebből már pár dolog kiolvasható. Ha x nagy \sqrt n-hez viszonyítva, akkor a hiba nagyjából feleződik: x=tn, ekkor c is hasonló nagyságrendű, és \frac{c^2}{2(\sqrt n + c)} \approx \frac {t^2n^2}{2tn} = x/2

Viszont ha már c<1, akkor a következő hiba már kisebb, mint c2, vagyis valóban igaz a lépésenkénti duplázódó pontosság.

* * *

Ha gyorsítani akarunk az eljáráson, akkor annyit még érdemes megtenni, hogy a \sqrt n-re adunk egy körülbelüli becslést, hogy az algoritmusnak ne kelljen az n,n/2,n/4... lépéseken végigmennie. Ha d alapú számrendszert használunk, akkor keressük meg a legkisebb k-t, amire n\leqd2k, és ilyenkor indítsuk az algoritmust dk-ból, ezzel az első jó pár lépést megspóroljuk.

Egy példa a \sqrt 2 kiszámolására, a1=2 indulóértékkel:

2,00000000000000 --- 1,50000000000000 --- 1,41666666666667 --- 1,41421568627451 --- 1,41421356237469 --- 1,41421356237309 --- 1,41421356237309

Vagyis a 6. érték már 14 jegyre pontos.

Előzmény: [406] Sirpi, 2008-04-03 10:40:19
[408] Hajba Károly2008-04-04 00:18:51

Hallgass Sirpire, meglásd megéri!

Mivel a Sirpi javasolta rekurziós gyökvonás pontossága hatványozottan nő, így nagy számok esetén is gyors eredményt adhat. Talán nagyobb problémád lesz a nagy számok kezelésével, mint ezzel az eljárással.

Előzmény: [407] csewe, 2008-04-03 14:48:10

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]