
Refined Single Trunk Tree: A Rectilinear Steiner Tree
Generator For Interconnect Prediction

Hongyu Chen1
hchen@cs.ucsd.edu

Changge Qiao2
qiaocg@synopsys.com

Feng Zhou1
zfeng@cs.ucsd.edu

Chung-Kuan Cheng1
kuan@cs.ucsd.edu

1.Department of Computer Science & Engineering, University of California, San Diego

DCSE, UCSD; 9500 Gilman Dr.; La Jolla, CA 92093-0114
2. Synopsys, Inc.

700 East Middlefield Road; Mountain View, CA 94043

ABSTRACT
We devised an efficient and accurate estimation of the rectilinear
Steiner minimal tree (SMT), which is an essential building block
for on-line and posteriori interconnect prediction. We proposed a
new rectilinear Steiner tree generator, Refined Single Trunk Tree
(RST-T). Compared with traditional minimal spanning tree based
Steiner tree heuristics, RST-T has several advantages. 1. The
algorithm runs very fast. Experiments show that RST-T algorithm
runs 50 times faster than Prim's minimum spanning tree algorithm
for 10-pin nets. 2. The RST-T provides excellent wire length
estimation of the optimal solutions. For the nets of no more than
10 pins, the average wire length of RST-T is within 6 percent of
the optimal solutions. Actually, for the nets with five or less pins,
the wire length of RST-T is optimal. 3. The topology of RST-T
remains stable when pin locations deviate. Experiments show that
the topologies of routing trees produced by the proposed
algorithm is much more stable than the minimum spanning tree
and iterative 1-Steiner heuristics.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design aids – Layout, Placement
and routing.

General Terms: Algorithms

Keywords
VLSI CAD, Routing Estimation, Rectilinear Steiner Tree
Algorithm, Refined Single Trunk Tree

1. INTRODUCTION
Interconnect prediction plays an important role in different stages
in the design cycle because interconnect delay dominates the path
delay in the deep sub-micron era. Particularly, at floorplanning
and placement stages design tools need fast yet accurate
estimations of the physical parameters (wire length, source to sink

distance, etc.) of interconnect nets to guide the tools to optimize
the layout. This step is useful because we cannot afford to choose
between candidate placements based on a ‘real’ routing which
needs significantly more CPU time than wiring estimation.
Although it is extremely difficult to predict the exact output of
various router within very limited computing time, we can still
expect that modern routers try to route each net as an SMT with
its radius restricted. Hence, estimation of the cost of timing-
awareness Steiner tree is an essential part of interconnect
prediction in placement and floorplanning stages.
Even though it is widely recognized that minimal spanning tree
(MST)-based constructive method produces an excellent
estimation of the SMT cost, a lot of previous work still avoid
adopting constructive methods under the executing time
consideration. A naïve implementation of Prim’s algorithm for
MST needs O(n2) CPU time. By using sophisticated data structure,
this complexity can be reduced to O(nlogn), but the constant
factor is fairly large[13]. Empirical study shows that for the net
with less than 100 pins, Prim’s algorithm still runs faster than
those O(nlogn) algorithms[18]. To accelerate this time critical
task, some previous works use bounding box-based methods to
estimate the wirelength [3],[7]. These methods are less accurate,
but can achieve linear (for incremental estimation may even be
sublinear) time complexity. Another drawback of bounding box-
based estimators is that they cannot return an actual topology of
the routing tree, which is essential for the accurate interconnect
delay estimation. With the wire-size shrinking, the interconnect
delay becomes an important factor of the system performance.
Many placement and floorplan tools require more accurate
estimation on the interconnect delay. Thus, it is important to give
a fast constructive method for interconnect estimation. The key
part of this constructive method is a Steiner tree generator.
Working as an on-line and posterior interconnect estimation
engine, a Steiner tree generator should have the following
properties:

• Fast: As a part of interconnect prediction subroutine,
the Steiner tree generator will be called frequently by
placement tools: each time a new candidate placement is
generated, the placer needs to evaluate based on its
interconnection cost. At least it needs to call the Steiner
tree generator to generate the routing trees for those nets
whose pin positions are different with previous ones.
State-of-the-art VLSI design may contain millions of
nets, and the placer needs to search thousands of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SLIP’02, April 6-7, 2002, San Diego, California, USA.
Copyright 2002 ACM 1-58113-481-9/02/0004…$5.00.

85

candidates placements. We expect the Steiner tree
generator runs in O(n) time or O(n lgn) time with fairly
small constant, where n is the number of pins of nets.

• Accurate: To have a good estimation of the wire length
and timing, the output of Steiner tree generator for
prediction must have good correlation with the output
of the router. Since the router can spend much more
CPU time on routing tree construction than wiring
estimation, it is reasonable to assume that a router will
produce a routing tree with its wire length close to SMT
and its radius not much longer than the dimension of the
net’s bounding box. Therefore, the Steiner tree
generator used for wiring estimation should produce a
Steiner tree with short wire length and small radius.

• Stable: Generally, the Steiner tree generator is used to
calculate the cost function for other optimizing
algorithms (placement or floorplanning). A smooth cost
surface can make the optimizing algorithm converge fast
or get better solution. Many traditional SMT algorithms
start from the MST and then use some heuristic
techniques to refine the solution. MST’s topology is
very sensitive to the pin locations. While some pins’
positions change a little, the topology of the MST may
change dramatically. For example, in Fig.1(a), we have
an MST for a 4 pins net, where pin B is the source, and
pins A, D, and C are sinks. We perturb the location of
pin D by 0.02. A new MST shown in Fig.1(b) will be
resulted, in which the distance from source B to sink D
changes from 1.99 to 4.01 while the physical location of
pin D only changes 0.02. This phenomenon can damage
the smooth property of the cost surface for placer and
floorplanner. To avoid this, we want a more stable
topology for Steiner tree generator in the context of
distance prediction.

Therefore, our work aims to find a Steiner tree construction
algorithm with the above three properties. In this paper we
proposed a simple rectilinear Steiner tree heuristic named Refined
Single Trunk Tree (RST-T). Experiments show that our algorithm
is at least 30 times faster than the MST algorithms, and gives
exact optimal solution for all the nets with no more than 5 pins.
For nets with less than 15 pins, our method gives more accurate
estimation than MST (within 10% of the optimal cost). Moreover
our experiments show that RST-T has much better stability than
MST, Kahng-Robins’s tree, and SMT.

The rest of the paper is organized in the following way. In Section
2 we give a brief review on the existing rectilinear Steiner routing
tree algorithms. In Section 3, we present RST-T as a suitable
Steiner tree generator for wiring estimation. Then experimental
data are given in Section 4. Finally in Section 5 we give our
conclusions and future work directions.

2. EXISTING STEINER TREE
ALGORITHMS
SMT problem has been extensively studied in past decades. In
1966, [8] showed that the searching space of the Steiner points
could be restricted on Hanan grid points (The grid built by
drawing horizontal and vertical lines through each pin). Later
Garey etc. proved that this problem is NP-hard [6]. This NP-
hardness implies there is no existing polynomial time algorithm
that is guaranteed to find the optimal SMT. Currently, the best
algorithm takes about one day to derive optimal SMT of 60 or less
pins on a single-CPU workstation.
The early work of Hwang [10] showed that wire length of
rectilinear minimal spanning tree(MST) is at most 1.5 times of
SMT. This result motivated lots of SMT heuristics using MST as
a starting point: In [9], Hasan etc. replace neighborhood structures
of an independent set of rectilinear MST points by their optimal
RST’s. Sarrafzadeh and Wong[15] developed a recursive method
that keep partitioning the MST into subtrees until the subtree is
small enough. M. Borah[8] proposed an edge-based heuristic
which repeatedly connects a node to the nearest point on the
rectangular layout of an edge. All these MST based algorithms
need to construct an MST first, this preprocessing takes O(n2) or
O(nlogn) runtime with a fairly large constant.
Kahng etc. [12] proposed an iterated 1-Steiner heuristic which
makes a significant departure from those MST-based approaches.
This algorithm iteratively finds optimal Steiner points to be added
to the layout. The time complexity of this algorithm is O(kn2),
where k is the number of Steiner points.
Cong etc. [5] proposed a provably good algorithm which can
bound the path length by (1+∈) times the radius. And the total
wire length is at most 2(1+(2/∈)) times the SMT. Alpert etc. [1]
give a Prim-Dijkstra style algorithm, which produces a hybrid of
minimal spanning tree and shortest path tree. These algorithms
trade off the wire length and the radius (the longest source to sink
distance) to optimize the timing property of interconnect.

3. REFINED SINGLE TRUNK TREE
The proposed RST-T improves from a Steiner heuristic called
Single Trunk Steiner Tree (STST) (Fig. 2) [16]. The way to
construct STST is straightforward: just connect each pin to a trunk
that goes horizontally or vertically through the median position of
pins. We can try both of two possible trunk directions and pick
the better one as the result. Because of its linear computing time
STST has been used in wiring estimation for many years [4][17].
Although the ideas of STST seems primitive, STST model has
several advantages as a routing tree generator for wiring
estimation: 1) easy to construct; 2) source to sink distance is at
most the sum of the length of three edges of the net’s bounding
box; 3) the topology is stable; 4) for nets with less than 5 pins, its
wire length is close to SMT.

B(2,1)

C(3.01,2)

D(2.99,0)

 B(2,1)

C(3.01,2)

D(3.01,0)

(a) (b)

Fig. 1: An example of MST for two 4 pins nets, small
perturbation on two pin locations results dramatically change

on topology

86

At the same time, the drawback of STST is also obvious: given a
fixed bounding box of net, the total wire length of STST grows at
the rate of O(n) while for MST and SMT the wire length growing
rate is)(nO , where n is the number of pins in a net. Thus, for
the net with large number of pins, the STST gives a routing tree
with significantly longer wire length than SMT.

To fix this problem, we propose a refining procedure to shorten
the wire length of STST. We call the edge that connects the pin to
the trunk a stem (Fig. 3(b)). Each time we want to connect a pin to
the tree, we first check if it is shorter to connect it to the nearest
stem than to the trunk. If so, we connect it to the nearest stem
instead of connecting this pin to the trunk. The tree produced by
this refining procedure is called RST-T. Fig. 3 is an example of
RST-T and STST built for the same set of pins.
Fig. 4 is the formal description of the algorithm. After sorting all
the pins according to their coordinates, for each pin we can find
the neighboring stem within constant time. Hence, the computing
time of RST-T is dominated by sorting operating, which can be
done in O(nlgn) with fairly small constant factor.
We derive following lemmas on the geometrical properties of
RST-T:
Lemma 1: Assuming all the pins are randomly distributed in a
unit square with uniform distribution, the expected wire length for
RST-T is)(nO , where, n is the number of pins.

When n approaches infinity, the expected distance between a
point to its neighboring stem is of order n-0.5. Thus, the average
cost to connect one point to the tree is O(n-0.5). Since the length of

the trunk is at most one, the total wirelength of connecting all of
the n points is)(nO .

Lemma 2: For a net with no more than 4 pins, RST-T is an SMT.
For the net with 3 pins, the proposed RST-T is an SMT because
the SMT may have at most one Steiner point, and RST-T can find
the best one. According to [11], the SMT with 4 terminals may
have up to 2 Steiner points. We prove the lemma by showing that
RST-T can also find them. Fig. 5 is an example of two possible
optimal SMT topologies on four points.
In addition to Lemma2, according to our experiment on hundreds

(a)

Fig3. Refined Single Trunk Tree and Single Trunk Steiner

(b)

stem

trunk

Algorithm RST-T
Input: A set of points P = {(xi, yi)}
Output: A rectilinear Steiner tree with all points in P connected

A. Build an RST-T with horizontal trunk

1. Set ymid = median of all yi

2. Set xmin = Min{xi|(xi,ymid)∈P}, xmax = Max{xi|(xi,ymid)∈P}
3. Construct a horizontal trunk from (xmin,ymid) to (xmax, ymid)

4. Set U = {(x,y)|(x,y)∈P and y > ymid}

 L = {(x,y)|(x,y)∈P and y <ymid}
5. Sort all points in U according to their x coordinate by

descending order

6. Set Pini=(x,y),where (x,y)∈U and (x,y) minimize |x-xmin|+|x- xmax|
7. Connect Pini to the trunk, going vertical direction first
8. For all the points in U and to the left of Pini, from right to left,

process point p one by one:
 Connect p to the neighboring stem or to the trunk depending on

which way is shorter, when we connecting a point to trunk or
stem, we always go vertical direction first.

9. For all the points in U and to the right of Pini, from left to right,
process point p one by one:

 Connect p to the neighboring stem or to the trunk depending on
which way is shorter, when we connecting a point to trunk or
stem, we always go vertical direction first.

10. Repeat the procedure from step 5 to step 9, process points in L
B. Build an RST-T with vertical trunk in the similar way to A.
C. Return one tree with shorter total wirelength from two trees built

by step A and step B.

Fig. 4 RST-T algorithm

A

B

C

D

A

C
B

D

Fig.5. The two possible Steiner tree topologies on four
points

(a) (b)

(a) STST with a horizontal trunk

Fig2. Single Trunk Steiner Trees

(b) STST with a vertical trunk

87

of randomly selected test cases, RST-T is always the optimal SMT
for 5-pin net. Fig. 6 is examples of different topologies of RST-T
for 5-pins nets.

Lemma 3: Assume the net has a bounding box with width w and
height h, The path length traversing along RST-T between any
two pins is shorter than max{3w+2h, 3h+2w}.

4. EXPERIMENTAL RESULTS
We implemented the RST-T algorithm using C programming
language and compared it with Salowe’s SMT algorithm [14],
iterative 1-Steiner SMT heuristic algorithm, and Rectilinear MST
algorithm. For different n from 3 to 20, 100 different random
generated n-pin test cases are solved using all methods. The
random test cases are generated from a uniform distribution on a
10000 by 10000 grid. In table 1, the average estimation error and
the standard deviations of the errors are showed. In table 2, we
compare the running time of different algorithms. In table 3, we
compare the stabilities of different methods.
Table 1 shows that RST-T and 1-Steiner heuristic produces the
optimal solution for all the 3-pins and 4-pins net. For 5-pins net,
RST-T still produces optimal solution and 1-Steiner heuristic’s
average wire length is about 0.1 percent larger than the optimal
one. For net with no more than 10 pins, RST-T’s average wire
length is within 6 percent of SMT. This error is at least 2 times
smaller than that of MST. For all the test cases with less than 16
pins, RST-T gives a more accurate estimation than MST.
In table 2, we compare the running time of different algorithms.
Because of the NP-hardness of SMT problem, the exact SMT
algorithm runs very slow when the size of net goes large enough.
For the largest net we tested, which has 20 pins, RST-T runs
faster than exact SMT algorithm with about twenty thousand
times speedup. Compared with 1-Steiner heuristc, RST-T can run
at least 140 times faster for all test cases. Compared with MST
algorithm, which has O(n2) time complexity, our RST-T achieved
at least 10 times of speed up for all test cases. For the net with
more than 6 pins, RST-T is more than 30 times faster than MST.
We use a set of 10-pin nets to test the stabilities of different
algorithms. For each 10-pin net, we randomly select 3 pins and
perturb their locations by 10. We record the changes of source-to-
sink distance for each sink. Table 3 shows the average and
standard deviation of those changes. RST-T’s average source-to-
sink distance change is about 6.4% of MST’s and 20% of 1-
Steiner’s. The standard deviation of RST-T is about 50% to 25%
of other methods. This experiment implies that RST-T produces a
much more stable topology than other three algorithms.

Table 1: Wire length produced by different Steiner tree
algorithms

Table 2: Run time of different Steiner tree algorithms

Number
of pins

SMT
 (sec)

1-Steiner
(sec)

MST
 (sec)

RSS-T
(sec)

3 2.1e-4 1.1e-4 8.0e-6 7.5e-7

4 3.0e-4 1.7e-4 1.0e-5 7.6e-7

5 4.2e-4 2.0e-4 1.7e-5 7.8e-7

6 6.8e-4 2.3e-4 2.2e-5 7.9e-7

7 9.3e-4 2.4e-4 2.8e-5 8.0e-7

8 1.4e-3 2.7e-4 3.1e-5 8.2e-7

9 2.2e-3 3.2e-4 3.7e-5 8.4e-7

10 3.2e-3 3.8e-4 4.4e-5 8.5e-7

11 4.8e-3 4.6e-4 5.1e-5 8.8e-7

12 7.4e-3 5.2e-4 5.8e-5 9.1e-7

13 1.2e-2 5.9e-4 6.3e-5 9.4e-7

14 2.1e-2 6.2e-4 7.1e-5 9.9e-7

15 3.0e-2 7.3e-4 8.1e-5 1.3e-7

16 5.2e-2 8.2e-4 9.3e-5 1.6e-7

20 8.8e-1 9.4e-2 1.6e-4 2.2e-6

1-Steiner RST-T MST #
of

pins
Ave.
Err.

Err.
Div.

Ave.
Err.

Err.
Div.

Ave
Err.

Err.
Div.

3 0 0 0 0 0.0944 0.0789

4 0 0 0 0 0.1002 0.0474

5 0.0014 0.0062 0 0 0.1041 0.0492

6 0.0012 0.0053 0.0106 0.0264 0.1062 0.0430

7 0.0035 0.0067 0.0142 0.0299 0.1124 0.0412

8 0.0050 0.0078 0.0263 0.0367 0.1130 0.0434

9 0.0038 0.0072 0.0472 0.0370 0.1180 0.0378

10 0.0044 0.0077 0.0594 0.0369 0.1250 0.0399

11 0.0041 0.0074 0.0709 0.0371 0.1237 0.0431

12 0.0036 0.0075 0.0813 0.0373 0.1263 0.0316

13 0.0029 0.0072 0.0897 0.0372 0.1203 0.0308

14 0.0033 0.0073 0.0983 0.0383 0.1177 0.0296

15 0.0025 0.0074 0.1050 0.0395 0.1176 0.0293

16 0.0044 0.0070 0.1246 0.0387 0.1206 0.0307

20 0.0050 0.0068 0.1462 0.0404 0.1251 0.0454

Fig.6. Three possible RST-T topologies on five points

C

A

B

D

(c)

E

(a)

A

B

C

D

E

C

A

B

D
(b)

E

88

Table3: Stability comparison of different routing tree
algorithms

Number
of pins

SMT
(Exact)

1-Steiner MST RSST

Mean
change.

77 46 139 9

Std. Of
change

0.246 0.113 0.217 0.0536

5. CONCLUSIONS AND FUTURE WORK
We have developed a fast Rectilinear Steiner Tree algorithm for
on-line and posterior interconnect prediction. The algorithm
produces an optimal SMT for all the nets with no more than 5
pins. For the net with less than 10 pins, the wire length of Steiner
tree produced by our algorithm is within 6 percent of optimal
solution. That means RST-T can give a very accurate estimation
of the wire length for typical VLSI interconnect. The time
complexity of RST-T algorithm is O(nlgn). Experimental result
shows that this algorithm can run 50 times faster than MST
algorithm for 10-pin nets. In addition, RST-T is more stable than
MST and Kahng-Robins’ heuristic in terms of routing tree’s
sensitivity to pin locations. This property makes it more suitable
to work as a Steiner tree generator for interconnect prediction.
Adapting RST-T to interconnect prediction in the presence of
obstacles will be an interesting future research problem.

6. REFERENCES
[1] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D.

Karger, “Prim-Dijkstra tradeoffs for improved performance-
driven routing tree design,” IEEE Trans. on CAD 14(7), July
1995, pp.890-896.

[2] M. Borah, R. M. Owens, and M. J. Irwin, “An edge-based
heuristic for Steiner routing,” in IEEE Trans. on CAD, vol.
13, no. 12, pp.1563-1568, Dec. 1994

[3] A. E. Caldwell, A. B. Kahng, S. Mantic, I. L. Markov, and A.
Zelikovsky, “On Wirelength Estimations for Row-Based
Placement”, IEEE Trans. on CAD 18(9), (1999), pp. 1265-
1278.

[4] A. H. Chao, E. M. Nequist, and T. D. Vuong, “Direct
Solution of Performance Constraints During Placement,” in
Proc. IEEE Custom Integrated Circuits Conference, 1995
pp27.2.1-27.2.4

[5] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K.
Wong, "Provably Good Performance-Driven Global
Routing", IEEE Trans. on CAD 11(6), June 1992, pp. 739-
752.

[6] M. R. Garey, R. L. Graham, and D. S. Johnson, “The
Complexity of computing Steiner minimal Trees,” in SIAM
Journal on Applied Mathematics 32:835-859, 1977

[7] T. Hamada, C. – K. Cheng, and P. M. Chau, “A wire length
estimation technique utilizing neighborhood density
equations,” in Proc. ACM/IEEE Design Automation Conf.,
1992, pp. 57-61

[8] M. Hanan, “On Steiner’s Problem with Rectilinear Distance”,
in SIAM J on App Math 14:255-265, 1966

[9] N. Hasan, G. Vijayan, and C. K. Wong, “A Neighborhood
Improvement Algorithm for Rectilinear Steiner Trees,” in
Proc. ICCAS1990 pp2869-2872

[10] F. K. Hwang, “On Steiner minimal trees with rectilinear
distance,” in SIAM J. Appl. Math., pp. 104-114, Jan. 1976

[11] F. K. Hwang, D. S. Richards, and P. Winter, “The Steiner
Tree Problem,” North Holland Press, 1992.

[12] A. B. Kahng and G. Robins, "A New Class of Iterative
Steiner Tree Heuristics with Good Performance", IEEE
Trans. on CAD 11(7), July 1992, pp. 893-902

[13] F. P. Preparata, and M. I. Shamos, Computational Geometry:
An Introduction. New York: Springer-Verlag, 1985.

[14] J. S. Salowe and D. M. Warme, "Thirty-Five-Point
Rectilinear Steiner Minimal Trees in a Day", in Networks: An
International Journal, volume 25, 1995

[15] M. Sarrafzadeh and C. K. Wong, “Hierarchical Steiner tree
construction in uniform orientations,” in IEEE Trans. on
CAD, vol. 11, no. 9, pp. 1095-1103, Sept. 1992

[16] J. Soukup, “circuit layout,” Proc. IEEE, Oct. 1981, pp. 1281-
1304

[17] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: An
Algorithm for Performance-Driven Placement of Cell-Based
Ics,” IEEE Trans. CAS, vol. CAS-39, pp. 825--840, Nov.
1992

[18] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST

89

