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ABSTRACT 
We devised an efficient and accurate estimation of the rectilinear 
Steiner minimal tree (SMT), which is an essential building block 
for on-line and posteriori interconnect prediction. We proposed a 
new rectilinear Steiner tree generator, Refined Single Trunk Tree 
(RST-T). Compared with traditional minimal spanning tree based 
Steiner tree heuristics, RST-T has several advantages. 1. The 
algorithm runs very fast. Experiments show that RST-T algorithm 
runs 50 times faster than Prim's minimum spanning tree algorithm 
for 10-pin nets. 2. The RST-T provides excellent wire length 
estimation of the optimal solutions. For the nets of no more than 
10 pins, the average wire length of RST-T is within 6 percent of 
the optimal solutions. Actually, for the nets with five or less pins, 
the wire length of RST-T is optimal. 3. The topology of RST-T 
remains stable when pin locations deviate. Experiments show that 
the topologies of routing trees produced by the proposed 
algorithm is much more stable than the minimum spanning tree 
and iterative 1-Steiner heuristics. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design aids – Layout, Placement 
and routing. 

General Terms: Algorithms 

Keywords 
VLSI CAD, Routing Estimation, Rectilinear Steiner Tree 
Algorithm, Refined Single Trunk Tree 

1. INTRODUCTION 
Interconnect prediction plays an important role in different stages 
in the design cycle because interconnect delay dominates the path 
delay in the deep sub-micron era. Particularly, at floorplanning 
and placement stages design tools need fast yet accurate 
estimations of the physical parameters (wire length, source to sink 

distance, etc.) of interconnect nets to guide the tools to optimize 
the layout. This step is useful because we cannot afford to choose 
between candidate placements based on a ‘real’ routing which 
needs significantly more CPU time than wiring estimation.  
Although it is extremely difficult to predict the exact output of 
various router within very limited computing time, we can still 
expect that modern routers try to route each net as an SMT with 
its radius restricted. Hence, estimation of the cost of timing-
awareness Steiner tree is an essential part of interconnect 
prediction in placement and floorplanning stages.  
Even though it is widely recognized that minimal spanning tree 
(MST)-based constructive method produces an excellent 
estimation of the SMT cost, a lot of previous work still avoid 
adopting constructive methods under the executing time 
consideration. A naïve implementation of Prim’s algorithm for 
MST needs O(n2) CPU time. By using sophisticated data structure, 
this complexity can be reduced to O(nlogn), but the constant 
factor is fairly large[13]. Empirical study shows that for the net 
with less than 100 pins, Prim’s algorithm still runs faster than 
those O(nlogn) algorithms[18]. To accelerate this time critical 
task, some previous works use bounding box-based methods to 
estimate the wirelength [3],[7]. These methods are less accurate, 
but can achieve linear (for incremental estimation may even be 
sublinear) time complexity. Another drawback of bounding box-
based estimators is that they cannot return an actual topology of 
the routing tree, which is essential for the accurate interconnect 
delay estimation. With the wire-size shrinking, the interconnect 
delay becomes an important factor of the system performance. 
Many placement and floorplan tools require more accurate 
estimation on the interconnect delay. Thus, it is important to give 
a fast constructive method for interconnect estimation. The key 
part of this constructive method is a Steiner tree generator. 
Working as an on-line and posterior interconnect estimation 
engine, a Steiner tree generator should have the following 
properties: 

• Fast:  As a part of interconnect prediction subroutine, 
the Steiner tree generator will be called frequently by 
placement tools: each time a new candidate placement is 
generated, the placer needs to evaluate based on its 
interconnection cost. At least it needs to call the Steiner 
tree generator to generate the routing trees for those nets 
whose pin positions are different with previous ones. 
State-of-the-art VLSI design may contain millions of 
nets, and the placer needs to search thousands of 
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candidates placements. We expect the Steiner tree 
generator runs in O(n) time or O(n lgn) time with fairly 
small constant, where n is the number of pins of nets. 

• Accurate: To have a good estimation of the wire length 
and timing, the output of Steiner tree generator for 
prediction must have good correlation with the output 
of the router. Since the router can spend much more 
CPU time on routing tree construction than wiring 
estimation, it is reasonable to assume that a router will 
produce a routing tree with its wire length close to SMT 
and its radius not much longer than the dimension of the 
net’s bounding box. Therefore, the Steiner tree 
generator used for wiring estimation should produce a 
Steiner tree with short wire length and small radius. 

• Stable: Generally, the Steiner tree generator is used to 
calculate the cost function for other optimizing 
algorithms (placement or floorplanning). A smooth cost 
surface can make the optimizing algorithm converge fast 
or get better solution. Many traditional SMT algorithms 
start from the MST and then use some heuristic 
techniques to refine the solution. MST’s topology is 
very sensitive to the pin locations. While some pins’ 
positions change a little, the topology of the MST may 
change dramatically. For example, in Fig.1(a), we have 
an MST for a 4 pins net, where pin B is the source, and 
pins A, D, and C are sinks. We perturb the location of 
pin D by 0.02. A new MST shown in Fig.1(b) will be 
resulted, in which the distance from source B to sink D 
changes from 1.99 to 4.01 while the physical location of 
pin D only changes 0.02. This phenomenon can damage 
the smooth property of the cost surface for placer and 
floorplanner. To avoid this, we want a more stable 
topology for Steiner tree generator in the context of 
distance prediction.   

 

Therefore, our work aims to find a Steiner tree construction 
algorithm with the above three properties. In this paper we 
proposed a simple rectilinear Steiner tree heuristic named Refined 
Single Trunk Tree (RST-T). Experiments show that our algorithm 
is at least 30 times faster than the MST algorithms, and gives 
exact optimal solution for all the nets with no more than 5 pins. 
For nets with less than 15 pins, our method gives more accurate 
estimation than MST (within 10% of the optimal cost). Moreover 
our experiments show that RST-T has much better stability than 
MST, Kahng-Robins’s tree, and SMT.  

The rest of the paper is organized in the following way. In Section 
2 we give a brief review on the existing rectilinear Steiner routing 
tree algorithms. In Section 3, we present RST-T as a suitable 
Steiner tree generator for wiring estimation. Then experimental 
data are given in Section 4. Finally in Section 5 we give our 
conclusions and future work directions. 

2. EXISTING STEINER TREE 
ALGORITHMS 
SMT problem has been extensively studied in past decades. In 
1966, [8] showed that the searching space of the Steiner points 
could be restricted on Hanan grid points (The grid built by 
drawing horizontal and vertical lines through each pin). Later 
Garey etc. proved that this problem is NP-hard [6]. This NP-
hardness implies there is no existing polynomial time algorithm 
that is guaranteed to find the optimal SMT. Currently, the best 
algorithm takes about one day to derive optimal SMT of 60 or less 
pins on a single-CPU workstation. 
The early work of Hwang [10] showed that wire length of 
rectilinear minimal spanning tree(MST) is at most 1.5 times of 
SMT. This result motivated lots of SMT heuristics using MST as 
a starting point: In [9], Hasan etc. replace neighborhood structures 
of an independent set of rectilinear MST points by their optimal 
RST’s. Sarrafzadeh and Wong[15] developed a recursive method 
that keep partitioning the MST into subtrees until the subtree is 
small enough. M. Borah[8] proposed an edge-based heuristic 
which repeatedly connects a node to the nearest point on the 
rectangular layout of an edge.  All these MST based algorithms 
need to construct an MST first, this preprocessing takes O(n2) or 
O(nlogn) runtime with a fairly large constant.  
Kahng etc. [12] proposed an iterated 1-Steiner heuristic which 
makes a significant departure from those MST-based approaches. 
This algorithm iteratively finds optimal Steiner points to be added 
to the layout. The time complexity of this algorithm is O(kn2), 
where k is the number of Steiner points. 
Cong etc. [5] proposed a provably good algorithm which can 
bound the path length by (1+∈) times the radius. And the total 
wire length is at most 2(1+(2/∈)) times the SMT. Alpert etc. [1] 
give a Prim-Dijkstra style algorithm, which produces a hybrid of 
minimal spanning tree and shortest path tree.   These algorithms 
trade off the wire length and the radius (the longest source to sink 
distance) to optimize the timing property of interconnect. 

3. REFINED SINGLE TRUNK TREE 
The proposed RST-T improves from a  Steiner heuristic called 
Single Trunk Steiner Tree (STST) (Fig. 2) [16]. The way to 
construct STST is straightforward: just connect each pin to a trunk 
that goes horizontally or vertically through the median position of 
pins. We can try both of two possible trunk directions and pick 
the better one as the result. Because of its linear computing time 
STST has been used in wiring estimation for many years [4][17].  
Although the ideas of STST seems primitive, STST model has 
several advantages as a routing tree generator for wiring 
estimation: 1) easy to construct; 2) source to sink distance is at 
most the sum of the length of three edges of the net’s bounding 
box; 3) the topology is stable; 4) for nets with less than 5 pins, its 
wire length is close to SMT.  
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Fig. 1: An example of MST for two 4 pins nets, small 
perturbation on two pin locations results dramatically change 

on topology 
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At the same time, the drawback of STST is also obvious: given a 
fixed bounding box of net, the total wire length of STST grows at 
the rate of O(n) while for MST and SMT the wire length growing 
rate is )( nO , where n is the number of pins in a net. Thus, for 
the net with large number of pins, the STST gives a routing tree 
with significantly longer wire length than SMT.  
 

To fix this problem, we propose a refining procedure to shorten 
the wire length of STST. We call the edge that connects the pin to 
the trunk a stem (Fig. 3(b)). Each time we want to connect a pin to 
the tree, we first check if it is shorter to connect it to the nearest 
stem than to the trunk. If so, we connect it to the nearest stem 
instead of connecting this pin to the trunk. The tree produced by 
this refining procedure is called RST-T. Fig. 3 is an example of 
RST-T and STST built for the same set of pins. 
Fig. 4 is the formal description of the algorithm. After sorting all 
the pins according to their coordinates, for each pin we can find 
the neighboring stem within constant time. Hence, the computing 
time of RST-T is dominated by sorting operating, which can be 
done in O(nlgn) with fairly small constant factor. 
We derive following lemmas on the geometrical properties of 
RST-T: 
Lemma 1: Assuming all the pins are randomly distributed in a 
unit square with uniform distribution, the expected wire length for 
RST-T is )( nO , where, n is the number of pins. 

When n approaches infinity, the expected distance between a 
point to its neighboring stem is of order n-0.5. Thus, the average 
cost to connect one point to the tree is O(n-0.5). Since the length of 

the trunk is at most one, the total wirelength of connecting all of 
the n points is )( nO . 

Lemma 2: For a net with no more than 4 pins, RST-T is an SMT. 
For the net with 3 pins, the proposed RST-T is an SMT because 
the SMT may have at most one Steiner point, and RST-T can find 
the best one. According to [11], the SMT with 4 terminals may 
have up to 2 Steiner points. We prove the lemma by showing that  
RST-T can also find them. Fig. 5 is an example of two possible 
optimal SMT topologies on four points. 
In addition to Lemma2, according to our experiment on hundreds 

(a) 

Fig3. Refined Single Trunk Tree and Single Trunk Steiner 

(b) 

stem 

trunk 

Algorithm RST-T 
Input: A set of points P = {(xi, yi)} 
Output: A rectilinear Steiner tree with all points in P connected 
 
A. Build an RST-T with horizontal trunk 

1. Set ymid = median of all yi 

2. Set xmin = Min{xi|(xi,ymid)∈P}, xmax = Max{xi|(xi,ymid)∈P}  
3. Construct a horizontal trunk from (xmin,ymid) to (xmax, ymid) 

4. Set U = {(x,y)|(x,y)∈P and y > ymid}  

        L = {(x,y)|(x,y)∈P and y <ymid} 
5. Sort all points in U according to their x coordinate by 

descending order 

6. Set Pini=(x,y),where (x,y)∈U and (x,y) minimize |x-xmin|+|x- xmax| 
7. Connect Pini to the trunk, going vertical direction first 
8. For all the points in U and to the left of Pini, from right to left, 

process point p one by one: 
      Connect p to the neighboring stem or to the trunk depending on 

which way is shorter, when we connecting a point to trunk or 
stem, we always go vertical direction first. 

9. For all the points in U and to the right of Pini, from left to right, 
process point p one by one: 

      Connect p to the neighboring stem or to the trunk depending on 
which way is shorter, when we connecting a point to trunk or 
stem, we always go vertical direction first. 

10. Repeat the procedure from step 5 to step 9, process points in L  
B. Build an RST-T with vertical trunk in the similar way to A. 
C. Return one tree with shorter total wirelength from two trees built 

by step A and step B.  

Fig. 4 RST-T algorithm 

A 

B 

C 

D 

A 

C 
B 

D 

Fig.5. The two possible Steiner tree topologies on four 
points 

(a) (b) 

(a) STST with a horizontal trunk 

Fig2. Single Trunk Steiner Trees 

(b) STST with a vertical trunk 
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of randomly selected test cases, RST-T is always the optimal SMT 
for 5-pin net. Fig. 6 is examples of different topologies of RST-T 
for 5-pins nets. 

Lemma 3: Assume the net has a bounding box with width w and 
height h, The path length traversing along RST-T between any 
two pins is shorter than max{3w+2h, 3h+2w}. 

4. EXPERIMENTAL RESULTS 
We implemented the RST-T algorithm using C programming 
language and compared it with Salowe’s SMT algorithm [14], 
iterative 1-Steiner SMT heuristic algorithm, and Rectilinear MST 
algorithm. For different n from 3 to 20, 100 different random 
generated n-pin test cases are solved using all methods. The 
random test cases are generated from a uniform distribution on a 
10000 by 10000 grid. In table 1, the average estimation error and 
the standard deviations of the errors are showed. In table 2, we 
compare the running time of different algorithms. In table 3, we 
compare the stabilities of different methods. 
Table 1 shows that RST-T and 1-Steiner heuristic produces the 
optimal solution for all the 3-pins and 4-pins net. For 5-pins net, 
RST-T still produces optimal solution and 1-Steiner heuristic’s 
average wire length is about 0.1 percent larger than the optimal 
one. For net with no more than 10 pins, RST-T’s average wire 
length is within 6 percent of SMT. This error is at least 2 times 
smaller than that of MST. For all the test cases with less than 16 
pins, RST-T gives a more accurate estimation than MST. 
In table 2, we compare the running time of different algorithms. 
Because of the NP-hardness of SMT problem, the exact SMT 
algorithm runs very slow when the size of net goes large enough. 
For the largest net we tested, which has 20 pins, RST-T runs 
faster than exact SMT algorithm with about twenty thousand 
times speedup. Compared with 1-Steiner heuristc, RST-T can run 
at least 140 times faster for all test cases. Compared with MST 
algorithm, which has O(n2) time complexity, our RST-T achieved 
at least 10 times of speed up for all test cases. For the net with 
more than 6 pins, RST-T is more than 30 times faster than MST.  
We use a set of 10-pin nets to test the stabilities of different 
algorithms. For each 10-pin net, we randomly select 3 pins and 
perturb their locations by 10. We record the changes of source-to-
sink distance for each sink. Table 3 shows the average and 
standard deviation of those changes. RST-T’s average source-to-
sink distance change is about 6.4% of MST’s and 20% of 1-
Steiner’s. The standard deviation of RST-T is about 50% to 25% 
of other methods. This experiment implies that RST-T produces a 
much more stable topology than other three algorithms. 

Table 1: Wire length produced by different Steiner tree 
algorithms 

 
Table 2: Run time of different Steiner tree algorithms 

Number 
of pins 

SMT 
 (sec) 

1-Steiner 
(sec) 

MST 
 (sec) 

RSS-T 
(sec) 

3 2.1e-4 1.1e-4 8.0e-6 7.5e-7 

4 3.0e-4 1.7e-4 1.0e-5 7.6e-7 

5 4.2e-4 2.0e-4 1.7e-5 7.8e-7 

6 6.8e-4 2.3e-4 2.2e-5 7.9e-7 

7 9.3e-4 2.4e-4 2.8e-5 8.0e-7 

8 1.4e-3 2.7e-4 3.1e-5 8.2e-7 

9 2.2e-3 3.2e-4 3.7e-5 8.4e-7 

10 3.2e-3 3.8e-4 4.4e-5 8.5e-7 

11 4.8e-3 4.6e-4 5.1e-5 8.8e-7 

12 7.4e-3 5.2e-4 5.8e-5 9.1e-7 

13 1.2e-2 5.9e-4 6.3e-5 9.4e-7 

14 2.1e-2 6.2e-4 7.1e-5 9.9e-7 

15 3.0e-2 7.3e-4 8.1e-5 1.3e-7 

16 5.2e-2 8.2e-4 9.3e-5 1.6e-7 

20 8.8e-1 9.4e-2 1.6e-4 2.2e-6 

 

1-Steiner RST-T MST # 
of 

pins 
Ave. 
Err. 

Err. 
Div. 

Ave. 
Err. 

Err. 
Div. 

Ave 
Err. 

Err. 
Div. 

3 0 0 0 0 0.0944 0.0789 

4 0 0 0 0 0.1002 0.0474 

5 0.0014 0.0062 0 0 0.1041 0.0492 

6 0.0012 0.0053 0.0106 0.0264 0.1062 0.0430 

7 0.0035 0.0067 0.0142 0.0299 0.1124 0.0412 

8 0.0050 0.0078 0.0263 0.0367 0.1130 0.0434 

9 0.0038 0.0072 0.0472 0.0370 0.1180 0.0378 

10 0.0044 0.0077 0.0594 0.0369 0.1250 0.0399 

11 0.0041 0.0074 0.0709 0.0371 0.1237 0.0431 

12 0.0036 0.0075 0.0813 0.0373 0.1263 0.0316 

13 0.0029 0.0072 0.0897 0.0372 0.1203 0.0308 

14 0.0033 0.0073 0.0983 0.0383 0.1177 0.0296 

15 0.0025 0.0074 0.1050 0.0395 0.1176 0.0293 

16 0.0044 0.0070 0.1246 0.0387 0.1206 0.0307 

20 0.0050 0.0068 0.1462 0.0404 0.1251 0.0454 

Fig.6. Three possible RST-T topologies on five points 
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Table3: Stability comparison of different routing tree 
algorithms 

Number 
of pins 

SMT 
(Exact) 

1-Steiner MST RSST 

Mean 
change. 

77 46 139 9 

Std. Of 
change 

0.246 0.113 0.217 0.0536 

 

5. CONCLUSIONS AND FUTURE WORK 
We have developed a fast Rectilinear Steiner Tree algorithm for 
on-line and posterior interconnect prediction. The algorithm 
produces an optimal SMT for all the nets with no more than 5 
pins. For the net with less than 10 pins, the wire length of Steiner 
tree produced by our algorithm is within 6 percent of optimal 
solution. That means RST-T can give a very accurate estimation 
of the wire length for typical VLSI interconnect. The time 
complexity of RST-T algorithm is O(nlgn). Experimental result 
shows that this algorithm can run 50 times faster than MST 
algorithm for 10-pin nets. In addition, RST-T is more stable than 
MST and Kahng-Robins’ heuristic in terms of routing tree’s 
sensitivity to pin locations. This property makes it more suitable 
to work as a Steiner tree generator for interconnect prediction. 
Adapting RST-T to interconnect prediction in the presence of 
obstacles will be an interesting future research problem. 
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