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Problem. Triangle ABC has incenter I and excircles ΩA, ΩB , and ΩC . Let ℓA be the line
through the feet of the tangents from I to ΩA, and define lines ℓB and ℓC similarly. Prove that
the orthocenter of the triangle formed by lines ℓA, ℓB , and ℓC coincides with the Nagel point of
triangle ABC.

(The Nagel point of triangle ABC is the intersection of segments ATA, BTB , and CTC , where
TA is the tangency point of ΩA with side BC, and points TB and TC are defined similarly.)

Solution. First we prove one lemma.

Lemma. Let point P lie outside of circles Ω1 and Ω2. Let ℓ1 be the line through the feet of
the tangents from P to Ω1, define line ℓ2 similarly, and let Q be the intersection point of lines
ℓ1 and ℓ2. Then the midpoint of segment PQ lies on the radical axis of Ω1 and Ω2.

First proof. Let O1 and O2 be the centers of Ω1 and Ω2. Let S1 and T1 be the feet of
the tangents from P to Ω1, let M1 be the midpoint of segment S1T1, and define points S2, T2,
and M2 similarly. We consider the case when points S1 and S2 lie on segments PT1 and PT2,
respectively, and all other cases are analogous. Then

power(P,Ω1)− power(P,Ω2) = PS2
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= (QM2 −M2S2)(QM2 +M2T2)−

(QM1 −M1S1)(QM1 +M1T1)

= QS2 ·QT2 −QS1 ·QT1

= power(Q,Ω2)− power(Q,Ω1).

Observe that, when point X varies along line PQ, the difference power(X,Ω1)−power(X,Ω2)
depends linearly on X. Therefore, at the midpoint R of segment PQ we get that power(R,Ω1) =
power(R,Ω2), as needed. �

Second proof. (Ankan Bhattacharya) Let Γ be the circle on diameter PQ. Since the polar of
P with respect to Ω1 passes through Q, we get that Γ and Ω1 are orthogonal. Similarly, Γ and
Ω2 are orthogonal as well. Therefore, the center of Γ lies on the radical axis of Ω1 and Ω2. On
the other hand, the center of Γ is in fact the midpoint of segment PQ. �

Third proof. (Pavel Kozhevnikov) Let Ω be the circle with center P and zero radius. Denote
the feet of the tangents from P to Ω1 and Ω2 by S1, T1, S2, and T2 as in the first proof. Then the
midline m1 of triangle PS1T1 opposite P is the radical axis of Ω and Ω1. Similarly, the midline
m2 of triangle PS2T2 opposite P is the radical axis of Ω and Ω2. Since the midpoint of segment
PQ lies on both lines m1 and m2, we conclude that it is the radical center of Ω, Ω1, and Ω2.
Thus it also lies on the radical axis of Ω1 and Ω2. �

Let ∆ be the triangle formed by lines ℓA, ℓB , and ℓC . Let also H be the orthocenter of ∆.
Observe that the sides of ∆ are parallel to the exterior angle bisectors of triangle ABC. Thus
the altitudes of ∆ are parallel to the pairwise radical axes of ΩA, ΩB , and ΩC . By the Lemma,
it follows that the midpoint of segment IH is the radical center of ΩA, ΩB , and ΩC .

On the other hand, let J be the incenter of the medial triangle of triangle ABC. Then it is
well-known that J is the midpoint of segment IN .

We are only left to show that J is the radical center of ΩA, ΩB , and ΩC . (In fact this is
well-known, too, though not as widely as the theorem that J is the midpoint of segment IN .)
Then it would follow immediately that points H and N coincide.
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Here is one short proof. Let M be the midpoint of side BC, and let ΩB and ΩC touch line
BC at points U and V , respectively. Then M is the midpoint of segment UV , too, and so M

lies on the radical axis of ΩB and ΩC . Furthermore, since triangle ABC and its medial triangle
are homothetic, it follows that lines MJ and AI are parallel, and so line MJ is perpendicular
to the line through the centers of ΩB and ΩC . Thus line MJ coincides with the radical axis of
ΩB and ΩC . Similarly, J lies on the radical axes of ΩA with ΩB and ΩC as well. Therefore, J
is indeed the radical center of ΩA, ΩB , and ΩC . The solution is complete.

Remark. One more curious corollary of the Lemma is as follows. Let S be the intersection
point of the perpendiculars to the sides of triangle ABC at their tangency points with the
corresponding excircles. Let mA be the line through the feet of the tangents from S to ΩA, and
define lines mB and mC similarly. Then the incenter of the triangle formed by lines mA, mB ,
and mC coincides with the orthocenter of triangle ABC.

(Point S is known as the Bevan point of triangle ABC. It is also the circumcenter of the
triangle whose vertices are the excenters of triangle ABC. For the proof of the above corollary,
the important property of the Bevan point is that the circumcenter of triangle ABC coincides
with the midpoint of segment IS, and so also J coincides with the midpoint of segment HS.)

2


