## Nikolai Beluhov

Problem. Triangle $A B C$ has incenter $I$ and excircles $\Omega_{A}, \Omega_{B}$, and $\Omega_{C}$. Let $\ell_{A}$ be the line through the feet of the tangents from $I$ to $\Omega_{A}$, and define lines $\ell_{B}$ and $\ell_{C}$ similarly. Prove that the orthocenter of the triangle formed by lines $\ell_{A}, \ell_{B}$, and $\ell_{C}$ coincides with the Nagel point of triangle $A B C$.
(The Nagel point of triangle $A B C$ is the intersection of segments $A T_{A}, B T_{B}$, and $C T_{C}$, where $T_{A}$ is the tangency point of $\Omega_{A}$ with side $B C$, and points $T_{B}$ and $T_{C}$ are defined similarly.)

Solution. First we prove one lemma.
Lemma. Let point $P$ lie outside of circles $\Omega_{1}$ and $\Omega_{2}$. Let $\ell_{1}$ be the line through the feet of the tangents from $P$ to $\Omega_{1}$, define line $\ell_{2}$ similarly, and let $Q$ be the intersection point of lines $\ell_{1}$ and $\ell_{2}$. Then the midpoint of segment $P Q$ lies on the radical axis of $\Omega_{1}$ and $\Omega_{2}$.

First proof. Let $O_{1}$ and $O_{2}$ be the centers of $\Omega_{1}$ and $\Omega_{2}$. Let $S_{1}$ and $T_{1}$ be the feet of the tangents from $P$ to $\Omega_{1}$, let $M_{1}$ be the midpoint of segment $S_{1} T_{1}$, and define points $S_{2}, T_{2}$, and $M_{2}$ similarly. We consider the case when points $S_{1}$ and $S_{2}$ lie on segments $P T_{1}$ and $P T_{2}$, respectively, and all other cases are analogous. Then

$$
\begin{aligned}
\operatorname{power}\left(P, \Omega_{1}\right)-\operatorname{power}\left(P, \Omega_{2}\right)= & P S_{1}^{2}-P S_{2}^{2} \\
= & P M_{1}^{2}+\frac{1}{4} S_{1} T_{1}^{2}-P M_{2}^{2}-\frac{1}{4} S_{2} T_{2}^{2} \\
= & P Q^{2}-Q M_{1}^{2}+\frac{1}{4} S_{1} T_{1}^{2}-P Q^{2}+Q M_{2}^{2}-\frac{1}{4} S_{2} T_{2}^{2} \\
= & \left(Q M_{2}-M_{2} S_{2}\right)\left(Q M_{2}+M_{2} T_{2}\right)- \\
& \left(Q M_{1}-M_{1} S_{1}\right)\left(Q M_{1}+M_{1} T_{1}\right) \\
= & Q S_{2} \cdot Q T_{2}-Q S_{1} \cdot Q T_{1} \\
= & \operatorname{power}\left(Q, \Omega_{2}\right)-\operatorname{power}\left(Q, \Omega_{1}\right)
\end{aligned}
$$

Observe that, when point $X$ varies along line $P Q$, the difference power $\left(X, \Omega_{1}\right)-\operatorname{power}\left(X, \Omega_{2}\right)$ depends linearly on $X$. Therefore, at the midpoint $R$ of segment $P Q$ we get that power $\left(R, \Omega_{1}\right)=$ power $\left(R, \Omega_{2}\right)$, as needed.

Second proof. (Ankan Bhattacharya) Let $\Gamma$ be the circle on diameter $P Q$. Since the polar of $P$ with respect to $\Omega_{1}$ passes through $Q$, we get that $\Gamma$ and $\Omega_{1}$ are orthogonal. Similarly, $\Gamma$ and $\Omega_{2}$ are orthogonal as well. Therefore, the center of $\Gamma$ lies on the radical axis of $\Omega_{1}$ and $\Omega_{2}$. On the other hand, the center of $\Gamma$ is in fact the midpoint of segment $P Q$.

Third proof. (Pavel Kozhevnikov) Let $\Omega$ be the circle with center $P$ and zero radius. Denote the feet of the tangents from $P$ to $\Omega_{1}$ and $\Omega_{2}$ by $S_{1}, T_{1}, S_{2}$, and $T_{2}$ as in the first proof. Then the midline $m_{1}$ of triangle $P S_{1} T_{1}$ opposite $P$ is the radical axis of $\Omega$ and $\Omega_{1}$. Similarly, the midline $m_{2}$ of triangle $P S_{2} T_{2}$ opposite $P$ is the radical axis of $\Omega$ and $\Omega_{2}$. Since the midpoint of segment $P Q$ lies on both lines $m_{1}$ and $m_{2}$, we conclude that it is the radical center of $\Omega, \Omega_{1}$, and $\Omega_{2}$. Thus it also lies on the radical axis of $\Omega_{1}$ and $\Omega_{2}$.

Let $\Delta$ be the triangle formed by lines $\ell_{A}, \ell_{B}$, and $\ell_{C}$. Let also $H$ be the orthocenter of $\Delta$. Observe that the sides of $\Delta$ are parallel to the exterior angle bisectors of triangle $A B C$. Thus the altitudes of $\Delta$ are parallel to the pairwise radical axes of $\Omega_{A}, \Omega_{B}$, and $\Omega_{C}$. By the Lemma, it follows that the midpoint of segment $I H$ is the radical center of $\Omega_{A}, \Omega_{B}$, and $\Omega_{C}$.

On the other hand, let $J$ be the incenter of the medial triangle of triangle $A B C$. Then it is well-known that $J$ is the midpoint of segment $I N$.

We are only left to show that $J$ is the radical center of $\Omega_{A}, \Omega_{B}$, and $\Omega_{C}$. (In fact this is well-known, too, though not as widely as the theorem that $J$ is the midpoint of segment $I N$.) Then it would follow immediately that points $H$ and $N$ coincide.

Here is one short proof. Let $M$ be the midpoint of side $B C$, and let $\Omega_{B}$ and $\Omega_{C}$ touch line $B C$ at points $U$ and $V$, respectively. Then $M$ is the midpoint of segment $U V$, too, and so $M$ lies on the radical axis of $\Omega_{B}$ and $\Omega_{C}$. Furthermore, since triangle $A B C$ and its medial triangle are homothetic, it follows that lines $M J$ and $A I$ are parallel, and so line $M J$ is perpendicular to the line through the centers of $\Omega_{B}$ and $\Omega_{C}$. Thus line $M J$ coincides with the radical axis of $\Omega_{B}$ and $\Omega_{C}$. Similarly, $J$ lies on the radical axes of $\Omega_{A}$ with $\Omega_{B}$ and $\Omega_{C}$ as well. Therefore, $J$ is indeed the radical center of $\Omega_{A}, \Omega_{B}$, and $\Omega_{C}$. The solution is complete.

Remark. One more curious corollary of the Lemma is as follows. Let $S$ be the intersection point of the perpendiculars to the sides of triangle $A B C$ at their tangency points with the corresponding excircles. Let $m_{A}$ be the line through the feet of the tangents from $S$ to $\Omega_{A}$, and define lines $m_{B}$ and $m_{C}$ similarly. Then the incenter of the triangle formed by lines $m_{A}, m_{B}$, and $m_{C}$ coincides with the orthocenter of triangle $A B C$.
(Point $S$ is known as the Bevan point of triangle $A B C$. It is also the circumcenter of the triangle whose vertices are the excenters of triangle $A B C$. For the proof of the above corollary, the important property of the Bevan point is that the circumcenter of triangle $A B C$ coincides with the midpoint of segment $I S$, and so also $J$ coincides with the midpoint of segment $H S$.)

