Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 388. (December 2005)

A. 388. In the hexagon ABCDEF we have AB=BC, CD=DE and EF=FA. Prove that


\frac{AB}{BE}+\frac{CD}{DA}+\frac{EF}{FC}\ge\frac32.

(5 pont)

Deadline expired on January 16, 2006.


Solution. Apply Ptolemaios' inequality for the quadrilateral ABCE:

AB.CE+BC.EA\geAC.BE.

Knowing that AB=BC,

AB.(CE+EA)\geAC.BE,

 \frac{AB}{BE} \ge \frac{AC}{CE+EA}.

Similarly

 \frac{CD}{DA} \ge \frac{CE}{EA+AC}

and

 \frac{EF}{FC} \ge \frac{EA}{AC+CE}.

Let AC=x, CE=y and EA=z. Summing up the inequalities above,

 \frac{AB}{BE}+\frac{CD}{DA}+\frac{EF}{FC}\ge
\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}.

By the AM-HM inequality

 \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} =

 = 
\left(\frac{x+y+z}{y+z}-1\right)+
\left(\frac{x+y+z}{z+x}-1\right)+
\left(\frac{x+y+z}{x+y}-1\right)=

 = (x+y+z)\left(\frac1{y+z}+\frac1{z+x}+\frac1{x+y}\right)-3
\ge

\ge
(x+y+z)\cdot\frac{9}{(y+z)+(z+x)+(x+y)}-3=\frac32.


Statistics:

15 students sent a solution.
5 points:Blázsik Zoltán, Dücső Márton, Erdélyi Márton, Estélyi István, Fischer Richárd, Gyenizse Gergő, Hujter Bálint, Jankó Zsuzsanna, Kisfaludi-Bak Sándor, Kónya 495 Gábor, Kutas Péter, Nagy 224 Csaba, Paulin Roland, Tomon István, Viktor Simjanoski.

Problems in Mathematics of KöMaL, December 2005