Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 394. (February 2006)

A. 394. Let a1,a2,...,aN be nonnegative reals, not all 0. Prove that there exists a sequence 1=n0<n1<...<nk=N+1 of integers such that

n1an0+n2an1+...+nkank-1<3(a1+a2+...+aN).

(5 pont)

Deadline expired on March 16, 2006.


Solution. Define aN+2+aN+3=...=0 as well and look for an infinite sequence 1=n0<n1<... of integers for which

\sum_{i=1}^\infty n_ia_{n_{i-1}} < 3\sum_{n=1}^\infty a_n.

Define the function f:[1,\infty)\toR such that f(x)=f([x]).

The required sequence is constructed randomly. Take a random variable t\in[0,1] of uniform distribution. Set n0=1 and n_i=\left[2\cdot e^{i-1+t}\right] for i=1,2,.... Then

 E\left(\sum_{i=1}^\infty n_ia_{n_{i-1}}\right) \le
E(n_1)\cdot a_0 + E
\left(\sum_{i=2}^\infty2\cdot e^{i-1+t}f(2\cdot e^{i-2+t})\right)=

=
E(n_1)\cdot a_0 + \sum_{i=2}^\infty\int_0^1
\big(2\cdot e^{i-1+t}f(2\cdot e^{i-2+t})\big)dt=

= E(n_1)\cdot a_0 + \int_0^\infty 2\cdot e^{u+1}f(2\cdot e^u)du
= E(n_1)\cdot a_0 + e\int_2^\infty f(x)dx =

 = E(n_1)\cdot a_0 + e\sum_{n=2}^Na_n.

The value of n1 is 2,3,4 or 5 if t<\ln\frac32, \ln\frac32\le t<\ln\frac42, \ln\frac42\le t<\ln\frac52, or \ln\frac52\le t<1, respectively. Therefore

E(n_1)=
\left(\ln\frac32\right)\cdot2 +
\left(\ln\frac42-\ln\frac32\right)\cdot3 +
\left(\ln\frac52-\ln\frac42\right)\cdot4 +
\left(1-\ln\frac52\right)\cdot5 \approx 2,985<3

and

E\left(\sum_{i=1}^\infty n_ia_{n_{i-1}}\right)
< 3a_1 + e(a_2+\dots+a_N).

There always exists a sequence 1=n0<n1<...<nk=N+1 such that

n1an0+n2an1+...+nkank-1<3a1+e(a2+a3+...+aN).


Statistics:

3 students sent a solution.
5 points:Erdélyi Márton, Paulin Roland.
0 point:1 student.

Problems in Mathematics of KöMaL, February 2006