Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 628. (November 2014)

A. 628. Is it true that for every infinite sequence \(\displaystyle x_1,x_2,\ldots\) of integers satisfying \(\displaystyle |x_{k+1}-x_k|=1\) for every positive integer \(\displaystyle k\), there exists a sequence \(\displaystyle k_1<k_2<\ldots<k_{2014}\) of positive integers such that as well the indices \(\displaystyle k_1,k_2,\ldots,k_{2014}\) as the numbers \(\displaystyle x_{k_1},x_{k_2},\ldots,x_{k_{2014}}\) (in this order) form arithmethic progressions?

Proposed by: E. Csóka, Warwick and Ben Green, Oxford

(5 pont)

Deadline expired on December 10, 2014.


Solution. The answer is NO. We provide a sequence whose neighboring terms have difference \(\displaystyle \pm 1\), but for which there do not exist appropriate indices \(\displaystyle k_1<\ldots<k_{2014}\).

Define

\(\displaystyle f(t) = \sum_{n=1}^\infty 50^n \sin\frac{t}{100^n} \)

(this series converges for all real \(\displaystyle t\), because \(\displaystyle \left|50^n \sin\frac{t}{100^n}\right|<\frac{|t|}{2^n}\)), and for each positive integer \(\displaystyle k\), let \(\displaystyle x_k\) be an integer with the same parity as \(\displaystyle k\) and \(\displaystyle \big|x_k-f(k)\big|\le1\). We claim that this sequence works.

First, we verify that \(\displaystyle |x_{k+1}-x_k|=1\). It is well-known that for any distinct reals \(\displaystyle u,v\), \(\displaystyle \big|\sin u-\sin v\big|<|u-v|\), hence

\(\displaystyle \big|f(u)-f(v)\big| = \left| \sum_{n=1}^\infty 50^n \bigg(\sin\frac{u}{100^n}-\sin\frac{u}{100^n}\bigg)\right| \le \sum_{n=1}^\infty 50^n \left| \sin\frac{u}{100^n}-\sin\frac{u}{100^n}\right| < \)

\(\displaystyle < \sum_{n=1}^\infty 50^n \frac{|u-v|}{100^n} = |u-v| \sum_{n=1}^\infty \left(\frac12\right)^n = |u-v|. \)

Applying this in the case \(\displaystyle (u,v)=(k,k+1)\), we find

\(\displaystyle |x_k-x_{k+1}| \le \big|x_k-f(k)\big| + \big|f(k)-f(k+1)\big| + \big|f(k+1)-x_{k+1}\big| < 1+1+1 = 3. \)

But since \(\displaystyle x_k-x_{k+1}\) is odd, we must have \(\displaystyle |x_k-x_{k+1}|=1\).

Now consider an arithmetic progression \(\displaystyle k_1<\ldots<k_{2014}\) with difference \(\displaystyle d\). Note that \(\displaystyle d\) lies between two neighboring powers of \(\displaystyle 100\), so \(\displaystyle 100^{m-1}\le d \le 100^m\) for some positive integer \(\displaystyle m\). Define \(\displaystyle h\) to be the largest positive integer with \(\displaystyle hd\le 100^m\); then we have \(\displaystyle h\le 100\), but

\(\displaystyle \frac{100^m}2 < hd \le 100^m. \)

Note that \(\displaystyle \frac{k_{101}}{100^m}, \frac{k_{102}}{100^m}, \ldots, \frac{k_{800}}{100^m}\) form an arithmetic progression of difference at most \(\displaystyle 1\) (and also that the first and last term have difference \(\displaystyle >2\pi\)), hence for some index \(\displaystyle 101\le i\le 800\), the remainder of \(\displaystyle \frac{k_i}{100^m}\) mod \(\displaystyle 2\pi\) lies in the range \(\displaystyle \left(\frac{\pi}{3};\frac{2\pi}{3}\right)\); for this index, \(\displaystyle \sin\frac{k_i}{100^m}>\sin\frac\pi3\). Fix such an index \(\displaystyle i\), and consider the quantity

\(\displaystyle \Delta = (x_{k_i+hd} - x_{k_i}) - (x_{k_i} - x_{k_i-hd}) = x_{k_i+hd} - 2x_{k_i} + x_{k_i-hd}. \)

If \(\displaystyle x_{k_i-hd}, x_{k_i}, x_{k_i+hd}\) form an arithmetic progression, then \(\displaystyle \Delta=0\). We will now proceed to show that \(\displaystyle \Delta\neq 0\), obtaining a contradiction. For the sake of simplicity, use the notation \(\displaystyle K=k_i\) and \(\displaystyle D=hd\). Then \(\displaystyle \frac12<\frac{D}{100^m}\le1\), \(\displaystyle 1\le K-D < K < K+D \le 900\), and

\(\displaystyle \Delta = x_{K+D} - 2x_K + x_{X-D}. \)

Let's substitute in the definition of the sequence, write down \(\displaystyle \Delta\) in terms of \(\displaystyle f\), and bound from below using the \(\displaystyle m\)-th term:

\(\displaystyle |\Delta| \ge \big| f(K+D) - 2f(K) + f(K-D) \big| - 4 = \left| \sum_{n=1}^\infty 50^n\bigg(\sin\frac{K+D}{100^n}-2\sin\frac{K}{100^n}+\sin\frac{K-D}{100^n}\bigg)\right| -4 \ge \)

\(\displaystyle \ge 50^m\bigg|\sin\frac{K+D}{100^m}-2\sin\frac{K}{100^m}+\sin\frac{K-D}{100^m}\bigg| - \)

\(\displaystyle -\sum_{n=1}^{m-1} 50^n\bigg|\sin\frac{K+D}{100^n}-2\sin\frac{K}{100^n}+\sin\frac{K-D}{100^n}\bigg| -\sum_{n=m+1}^\infty 50^n\bigg|\sin\frac{K+D}{100^n}-2\sin\frac{K}{100^n}+\sin\frac{K-D}{100^n}\bigg| -4. \)\(\displaystyle (1) \)

Applying the identity

\(\displaystyle \sin(a+b)-2\sin a +\sin(a-b) = \big(\sin(a+b)-\sin a\big)-\big(\sin a-\sin(a-b)\big) = \)

\(\displaystyle = 2\sin\frac{b}2\bigg(\cos\frac{2a+b}2-\cos\frac{2a-b}2\bigg) = - 4 \sin^2\frac{b}2 \sin a \)\(\displaystyle (2) \)

provides the following lower estimate of the \(\displaystyle m\)-th term:

\(\displaystyle 50^m\bigg|\sin\frac{K+D}{100^m}-2\sin\frac{K}{100^m}+\sin\frac{K-D}{100^m}\bigg| = 50^m \cdot 4\sin^2\frac{D}{2\cdot 100^m}\sin\frac{K}{100^m} > \)

\(\displaystyle > 50^m \cdot 4\sin^2\frac14\cdot\sin\frac\pi3 > \frac{50^m}5. \)\(\displaystyle (3) \)

Moreover, using \(\displaystyle (2)\) again, we have

\(\displaystyle \sum_{n=m+1}^\infty 50^n\bigg|\sin\frac{K+D}{100^n}-2\sin\frac{K}{100^n}+\sin\frac{K-D}{100^n}\bigg| = \sum_{n=m+1}^\infty 50^n \cdot 4\sin^2\frac{D}{2\cdot 100^n}\left|\sin\frac{K}{100^n}\right| < \)

\(\displaystyle < \sum_{n=m+1}^\infty 50^n \cdot 4\left(\frac{D}{2\cdot 100^n}\right)^2\cdot 1 < \sum_{n=m+1}^\infty 50^n \cdot 4\left(\frac{100^m}{2\cdot 100^n}\right)^2 = 50^m \sum_{\ell=1}^\infty \left(\frac1{200}\right)^\ell = \frac{50^m}{199} < \frac{50^m}{100}. \)\(\displaystyle (4) \)

Estimating the value of all the sines by \(\displaystyle 1\) for small indices (i.e. when \(\displaystyle n<m\)), we find

\(\displaystyle \sum_{n=1}^{m-1} 50^n\bigg|\sin\frac{K+D}{100^n}-2\sin\frac{K}{100^n}+\sin\frac{K-D}{100^n}\bigg| \le \sum_{n=1}^{m-1} 50^n \cdot 4 = \)

\(\displaystyle = 50^m\cdot 4\sum_{\ell=1}^m \left(\frac1{50}\right)^\ell < 50^m\cdot 4\sum_{\ell=1}^\infty \left(\frac1{50}\right)^\ell = 50^m\cdot \frac4{49} < \frac{50^m}{10}. \)\(\displaystyle (5) \)

Finally, putting estimates \(\displaystyle (3-5)\) into \(\displaystyle (1)\), we obtain the contradiction

\(\displaystyle |\Delta| > \frac{50^m}{5} - \frac{50^m}{100} - \frac{50^m}{10} - 4 = 50^m\cdot\frac{9}{100} - 4 > 0. \)

Therefore, \(\displaystyle x_{k_1},\ldots,x_{k_{2014}}\) can never form an arithmetic progression.


Statistics:

2 students sent a solution.
0 point:2 students.

Problems in Mathematics of KöMaL, November 2014