Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem B. 3825. (May 2005)

B. 3825. n is a positive integer, such that 2n+1 and 3n+1 are both square numbers. Prove that n is divisible by 40.

(4 pont)

Deadline expired on June 15, 2005.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Ha egy szám 5-tel osztva 1 vagy -1 maradékot ad, akkor négyzete 5-tel osztva 1 maradékot ad, ha pedig a szám \pm2 maradékot ad 5-tel osztva, akkor a négyzete 4 maradékot ad. Páros szám négyzete 4-gyel osztható, tehát 0 vagy 4 maradékot ad 8-cal osztva, páratlan szám négyzete pedig (2k+1)2=4k(k+1)+1, ahol vagy k vagy pedig k+1 páros, tehát 8-cal osztva 1 maradékot ad. Ezek szerint egy négyzetszámot akár 5-tel, akár 8-cal osztva csakis 0, 1 vagy 4 maradékot kaphatunk.

Ha n nem osztható 5-tel, akkor vagy 2n+1, vagy pedig 3n+1 nem lesz négyzetszám. Ha ugyanis n 5-tel osztva 1 vagy 3 maradékot ad, akkor a 2n+1 szám 3 vagy 2 maradékot fog adni, ha pedig n 5-tel osztva 2 vagy 4 maradékot ad, akkor 3n+1 maradéka lesz 2 vagy 3.

Hasonlóképpen, ha n 8-cal osztva 1, 2, 3, 5, 6 vagy 7 maradékot ad, akkor 2n+1 maradéka 8-cal osztva 3, 5 vagy 7 lesz, tehát nem lehet négyzetszám, ha pedig n 4 maradékot ad 8-cal osztva, akkor 3n+1 nem lehet négyzetszám, mivel 5 maradékot ad 8-cal osztva.

Ezek szerint n osztható 5-tel és 8-cal is. Mivel pedig ezek relatív prímek, a szorzatukkal, 40-nel is osztható kell legyen. Létezik is ilyen n szám, például n=40 esetén 2n+1=92 és 3n+1=112.


Statistics:

112 students sent a solution.
4 points:102 students.
3 points:6 students.
2 points:2 students.
1 point:1 student.
0 point:1 student.

Problems in Mathematics of KöMaL, May 2005