KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles
Current issue
Previous issues
Order Form
Special issues
Archives

 

English Issue, December 2002

Previous pageContentsNext pageORDER FORM


Solutions of problems B

B. 3429. Let \(\displaystyle q=\frac{1+\sqrt{5}}{2}\), and let \(\displaystyle f\colon\mathbb{N}\to\mathbb{N}\) be a function, such that for all positive integers n,

\(\displaystyle \big|f(n)-qn\big|<\frac{1}{q}. \)

Prove that f(f(n))= f(n)+n.

Solution. As \(\displaystyle \frac{1}{q\)\big|f(0)\big|">, obviously f(0)=0. For any other n, the value of f is a positive integer, otherwise f(n)=0<n would imply \(\displaystyle \frac{1}{q\)\big|f(n)-qn\big|=|-qn|"> and hence \(\displaystyle n<\frac{1}{q^2}<1\), which is impossible. It is easy to check, furthermore, that \(\displaystyle q(q-1)=\frac{\sqrt{5}+1}{2}\cdot\frac{\sqrt{5}-1}{2}=1\). Thus for any natural number n,

|f(f(n))- f(n)-n| = |f (f(n))- qf(n)+(q-1) f(n)- q(q-1)n| =
= |f (f(n))- qf(n)+ (q-1) (f(n)-qn)|.

As the inequality |a+b|\(\displaystyle \le\)|a|+|b| holds for all real numbers a, b, the above absolute value can be at most

|f (f(n))-qf(n)|+ | (q-1) (f(n)-qn)|= |f(f(n))-qf(n)|+ (q-1) |f(n)-qn|,

which is less than \(\displaystyle \frac{1}{q}+(q-1)\frac{1}{q}=1\) according to the condition. Hence

|f(f(n))- f(n)-n|<1,

which can only happen if f(f(n))- f(n)-n=0, as f(f(n)), f(n) and n are integers.

G. Bóka, Szolnok

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley