Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem A. 444. (January 2008)

A. 444. Given a continuous function f\colon \mathbb{R}\to\mathbb{R} such that for any real number a>0, the sequence f(a),f(2a),f(3a),\ldots converges to 0. Show that \lim\limits_{x\to\infty}f(x)=0.

Czech problem

(5 pont)

Deadline expired on February 15, 2008.


6 students sent a solution.
5 points:Korándi Dániel, Lovász László Miklós, Nagy 235 János, Tomon István.
4 points:Nagy 314 Dániel.
0 point:1 student.

Problems in Mathematics of KöMaL, January 2008