Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A régi honlapot akarom!!! :-)

Az A. 488. feladat (2009. október)

A. 488. P1P2P3 háromszög köré írt kör középpontja O, a Q pont a háromszög belsejében helyezkedik el. Minden egyes i=1,2,3-ra jelöljük ti-vel, illetve Oi-vel a QPi+1Pi+2 háromszög területét, illetve köréírt körének középpontját. (A csúcsokat ciklikusan számozzuk, tehát P4=P1 és P5=P2.) Igazoljuk, hogy


t_1\cdot \overrightarrow{OO_1} + t_2\cdot \overrightarrow{OO_2} + t_3\cdot
\overrightarrow{OO_3} = 0.

Német versenyfeladat

(5 pont)

A beküldési határidő 2009. november 10-én LEJÁRT.


Statisztika:

8 dolgozat érkezett.
5 pontot kapott:Bodor Bertalan, Éles András, Frankl Nóra, Márkus Bence, Nagy 235 János, Nagy 648 Donát, Szabó 928 Attila.
2 pontot kapott:1 versenyző.

A KöMaL 2009. októberi matematika feladatai