Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A C. 1661. feladat (2021. március)

C. 1661. Lottó Ottó, aki retteg a csökkenéstől, hagyományos lottót játszik. Itt 90 számból húznak ki öt számot. Ottó csak a következő feltételeknek eleget tevő számötöst jelöli be: az öt szám számjegyeit tekintve egy számjegy csak maximum egyszer szerepelhet, illetve miután leírta egymás mellé az öt számot növekvő sorrendben, a számjegyeknek is növekednie kell. Pl. 1, 2, 3, 46, 78. Hány, a feltételeknek megfelelő számötös létezik?

Javasolta: Berkó Erzsébet (Szolnok)

(5 pont)

A beküldési határidő 2021. április 12-én LEJÁRT.


Megoldás. A feltételek teljesüléséhez az szükséges, hogy a számok növekvő sorrendjében a számjegyeknek is növekednie kell, a fenti példában például 1, 2, 3, 4, 6, 7, 8 a számjegyek kérdéses sorrendje. Világos, hogy a jegyek között nem szerepelhet a 0, és az is, hogy a jegyek száma legalább öt és legfeljebb kilenc.

Megfordítva, ha vesszük az \(\displaystyle 1-9\) számjegyek közül \(\displaystyle k\) darabnak egy növekvő sorozatát, az egyértelműen meghatároz egy megfelelő számötöst. Ugyanis, mivel egyjegyű és kétjegyű számok szerepelhetnek, pontosan \(\displaystyle (k-5)\) darab kétjegyű kell legyen közöttük, amelyeknek – hogy növekvő sorrendet kapjunk – a végén kell szerepelniük. (Vagyis ha a számjegyek sorozata \(\displaystyle a_1<a_2<\dots<a_k\), akkor a kihúzott számok \(\displaystyle a_1,\dots,a_{10-k},\overline{a_{11-k}a_{12-k}},\dots,\overline{a_{k-1}a_k}\), ahol \(\displaystyle k=6\) esetén a két felülvonásos szám megegyezik és csak egy kétjegyű szám van.)

A 9 számjegy közül \(\displaystyle k\) különbözőt \(\displaystyle \binom{9}{k}\)-féleképpen válszthatunk ki, és a korábbiak alapján \(\displaystyle 5\leq k\leq 9\) esetén ez már meghatározza a számötöst. Így a feltételeknek megfelelő számötösök száma:

\(\displaystyle \binom{9}{5}+\binom{9}{6}+\binom{9}{7}+\binom{9}{8}+\binom{9}{9}=126+84+36+9+1=256.\)

Megjegyzés. A megoldás végén számolás helyett úgy is érvelhetünk, hogy a 9 számjegyből álló halmaznak \(\displaystyle 2^9=512\) részhalmaza van, és ezeknek pontosan a fele, vagyis 256 megfelelő, hiszen egy részhalmaz és a komplementere közül mindig pontosan az egyiknek lesz legalább öt eleme.


Statisztika:

A C. 1661. feladat értékelése még nem fejeződött be.


A KöMaL 2021. márciusi matematika feladatai