Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem C. 1837. (December 2024)

C. 1837. The ancient Greeks were already familiar with the fact that \(\displaystyle \pi\approx 3.1416\) can be approximated with the fraction \(\displaystyle 22/7 \approx 3.1429\). How many pairs of positive integers \(\displaystyle (a;b)\) satisfy the following properties: \(\displaystyle 1<b<100\) and the decimal form of \(\displaystyle \frac{a}{b}\) starts as \(\displaystyle 3.14\)?

Proposed by: Katalin Abigél Kozma, Győr

(5 pont)

Deadline expired on January 10, 2025.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Azokat az \(\displaystyle 0<a\) és \(\displaystyle 0<b<100\) egész számokat keressük, amelyekre

\(\displaystyle \frac{314}{100} \le \frac{a}{b} < \frac{315}{100}.\)

Kivonva \(\displaystyle 3\)-at:

\(\displaystyle \frac{14}{100} \le \frac{a-3b}{b} < \frac{15}{100}.\)

Legyen \(\displaystyle c=a-3b\) pozitív egész és innentől külön-külön vizsgáljuk az

\(\displaystyle (1)~~\frac{14}{100} \le \frac{c}{b} \quad \text{ és a } \quad (2)~~\frac{c}{b} < \frac{15}{100} \text{ egyenlőtlenséget}.\)

\(\displaystyle (2)\)-ből következően: \(\displaystyle c<\frac{15b}{100}<15\), azaz \(\displaystyle c \in\{1;2;3;4;5;6;7;8;9;10;11;12;13;14 \}.\) Vesszük \(\displaystyle (2)\) mindkét oldalának reciprokát, majd kivonunk \(\displaystyle 7\)-et:

\(\displaystyle \frac{b}{c}>\frac{100}{15} \Rightarrow \frac{b-7c}{c}>\frac{-5}{15}=-\frac{1}{3}.\)

Teljesen hasonlóan \(\displaystyle (1)\)-ből kapjuk, hogy

\(\displaystyle \frac{b}{c} \le \frac{100}{14} \Rightarrow \frac{b-7c}{c} \le \frac{2}{14}=\frac{1}{7}.\)

Mivel \(\displaystyle b\) és \(\displaystyle c\) egész, ezért \(\displaystyle d=b-7c\) is az. Ekkor

\(\displaystyle \frac{-1}{3}<\frac{d}{c} \le \frac{1}{7},\)

\(\displaystyle -\frac{c}{3}< d \le \frac{c}{7}.\)

Tehát ahogy \(\displaystyle c\) végigfut \(\displaystyle 1\)-től \(\displaystyle 14\)-ig, meg kell számolnunk, hogy hány egész szám van a \(\displaystyle \displaystyle{\Big]-\frac{c}{3}; \frac{c}{7}\Big]}\) intervallumban. Ezt táblázat segítségével tesszük meg:

begincenter \(\displaystyle c\) értéke \(\displaystyle ]-\frac{c}{3}; \frac{c}{7}]\) az intervallum egész elemei\(\displaystyle d\) lehetséges értékeinek száma
\(\displaystyle 1\) \(\displaystyle ]-\frac{1}{3}; \frac{1}{7}] \) \(\displaystyle 0\) \(\displaystyle 1\)
\(\displaystyle 2\) \(\displaystyle ]-\frac{2}{3}; \frac{2}{7}]\) \(\displaystyle 0\) \(\displaystyle 1 \)
\(\displaystyle 3\) \(\displaystyle ]-1; \frac{3}{7}] \) \(\displaystyle 0 \) \(\displaystyle 1 \)
\(\displaystyle 4\) \(\displaystyle ]-\frac{4}{3}; \frac{4}{7}] \) \(\displaystyle -1; 0 \) \(\displaystyle 2 \)
\(\displaystyle 5\) \(\displaystyle ]-\frac{5}{3}; \frac{5}{7}] \) \(\displaystyle -1; 0\) \(\displaystyle 2\)
\(\displaystyle 6\) \(\displaystyle ]-2; \frac{6}{7}]\) \(\displaystyle -1; 0\) \(\displaystyle 2 \)
\(\displaystyle 7\) \(\displaystyle ]-\frac{7}{3}; 1]\) \(\displaystyle -2;-1; 0;1 \) \(\displaystyle 4 \)
\(\displaystyle 8\) \(\displaystyle ]-\frac{8}{3}; \frac{8}{7}] \) \(\displaystyle -2;-1; 0;1 \) \(\displaystyle 4 \)
\(\displaystyle 9\) \(\displaystyle ]-3; \frac{9}{7}]\) \(\displaystyle -2;-1; 0;1 \) \(\displaystyle 4\)
\(\displaystyle 10\) \(\displaystyle ]-\frac{10}{3}; \frac{10}{7}] \) \(\displaystyle -3;-2;-1; 0;1 \) \(\displaystyle 5 \)
\(\displaystyle 11\) \(\displaystyle ]-\frac{11}{3}; \frac{11}{7}] \) \(\displaystyle -3;-2;-1; 0;1 \) \(\displaystyle 5 \)
\(\displaystyle 12\) \(\displaystyle ]-4; \frac{12}{7}]\) \(\displaystyle -3;-2;-1; 0;1 \) \(\displaystyle 5\)
\(\displaystyle 13\) \(\displaystyle ]-\frac{13}{3}; \frac{13}{7}] \) \(\displaystyle -4;-3;-2;-1; 0;1 \) \(\displaystyle 6 \)
\(\displaystyle 14 \) \(\displaystyle ]-\frac{14}{3}; 2] \) \(\displaystyle -4;-3;-2;-1; 0;1;2 \) \(\displaystyle 7\)

A feladat feltétele, hogy \(\displaystyle b<100\), ezért \(\displaystyle c=14\) esetén (lásd utolsó sor) \(\displaystyle d=b-7c=b-7 \cdot 14=b-98<100-98=2\), azaz \(\displaystyle d<2\). Így \(\displaystyle c=14\)-re a \(\displaystyle d=2\) nem jó, ezért csak \(\displaystyle 7-1=6\) megoldás van.

Összesen: \(\displaystyle 3 \cdot (1+2+4+5)+2 \cdot 6=48\) megfelelő \(\displaystyle (a;b)\) számpár van.

Megjegyzés. A Pick-tétel alkalmazásával is megoldható a feladat.


Statistics:

42 students sent a solution.
5 points:Farkas András, Iván Máté Domonkos, Kókai Ákos, Pink István.
4 points:Fercsák Flórián.
3 points:9 students.
2 points:6 students.
1 point:10 students.
0 point:8 students.

Problems in Mathematics of KöMaL, December 2024