Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

A K. 388. feladat (2013. október)

K. 388. Az angol ABC betűit (ABCDEFGHIJKLMNOPQRSTUVWXYZ) piramis formában leírjuk úgy, hogy minden sorba eggyel több betűt írunk, mint az előző sorba. Amikor a Z-hez érünk, akkor ismét az A, B, C, ...betűk következnek. Hányadik soroknál fordul elő először, hogy két egymás követő sor M betűvel végződik? Hányadik sor végén lesz M betű először?

(6 pont)

A beküldési határidő 2013. november 11-én LEJÁRT.


Megoldás. Az M betűig 13 betű van, az ABC pedig 26 betűből áll, ami a 13 többszöröse. Így az első kérdésre a válasz egyszerű. Ha mindkét sor végén M betű áll, akkor a második M betű végű sorban minden betűnek ismétlődnie kell néhányszor, hogy ismét az M legyen az utolsó betű. A legegyszerűbb, ha egyszer ismétlődik minden, azaz 26 betű van a sorban, és így a 26. sorban vagyunk. Mivel \(\displaystyle 1+2+...+25=\frac{26\cdot25}{2}\) osztható 13-mal, így a 25. és 26. soroknál fordul elő először, hogy két egymást követő sor M-mel végződik.

A piramis \(\displaystyle n\)-edik sorának végén az ismétlődő ABCD...XYZABC... betűsor \(\displaystyle 1+2+…+n=\frac{n(n+1)}{2}\)-edik betűje áll. Az M az ABC-ben a 13. betű, és az ABC hossza \(\displaystyle 26=2\cdot13\), így egyrészt \(\displaystyle 13|\frac{n(n+1)}{2}\), másrészt ez utóbbi szám a 13-nak páratlan számú többszöröse kell, hogy legyen. Mivel 13 prímszám, így a legkisebb két eset az \(\displaystyle n=12\) és az \(\displaystyle n=13\). Ha \(\displaystyle n=12\), akkor \(\displaystyle \frac{n(n+1)}{2} =6\cdot13\), ami 13-nak páros számú többszöröse. Ha \(\displaystyle n=13\), akkor \(\displaystyle \frac{n(n+1)}{2} =7\cdot13\). Tehát a 13. sor végén áll először M betű.


Statisztika:

193 dolgozat érkezett.
6 pontot kapott:82 versenyző.
5 pontot kapott:17 versenyző.
4 pontot kapott:24 versenyző.
3 pontot kapott:14 versenyző.
2 pontot kapott:22 versenyző.
1 pontot kapott:8 versenyző.
0 pontot kapott:16 versenyző.
Nem versenyszerű:10 dolgozat.

A KöMaL 2013. októberi matematika feladatai