A K. 560. feladat (2017. november) |
K. 560. Egy vizsgán 30 fő vett részt. Azok, akik megbuktak, 60 pontos átlagot teljesítettek, míg azok, akik átmentek, 84-et. A vizsga átlagpontszáma 80 lett. Hányan mentek át a vizsgán?
(6 pont)
A beküldési határidő 2017. december 11-én LEJÁRT.
Megoldás. \(\displaystyle x\) fő bukott meg, és \(\displaystyle 30-x\) fő ment át a vizsgán. Tudjuk, hogy a vizsgán elért pontszámok összege \(\displaystyle 30\cdot80=2400\). A bukottak, illetve a sikeres vizsgát tett vizsgázók pontszámának összege rendre \(\displaystyle 60x\) és \(\displaystyle 84\cdot(30-x)\). Ezek összege \(\displaystyle 2400\), tehát \(\displaystyle 60x+84\cdot(30-x)=2400\). Rendezve az \(\displaystyle x = 5\) értéket kapjuk, tehát 25-en mentek át a vizsgán. Ellenőrizve a kapott érték megfelel a feltételeknek (például huszonöten kaptak 84, míg öten 60 pontot).
Statisztika:
169 dolgozat érkezett. 6 pontot kapott: 162 versenyző. 5 pontot kapott: 3 versenyző. 1 pontot kapott: 2 versenyző. Nem versenyszerű: 2 dolgozat.
A KöMaL 2017. novemberi matematika feladatai