Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Lejárt határidejű KÖMAL feladatokról

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]  

Szeretnél hozzászólni? Jelentkezz be.
[679] Róbert Gida2011-08-18 23:59:02

B.4355. Egy nagyon munkás bizonyítás: helyettesítsünk be z=\frac {1}{xy}-t, rendezzük az egyenlőtlenséget nullára. Ekkor egy olyan törtet kapunk, aminek a nevezője pozitív (csak pozitív tagok szorzatából áll), így az kell, hogy a számláló pozitív minden x,y>0 esetén, ami végülis azt jelenti, hogy: (ezt a Mathematica is egyből megadja nekünk):

1+x2y+xy2+2x4y2+2x3y3+x6y3+2x2y4+2x5y4+x8y4+2x4y5+x7y5+2x10y5+x3y6

+2x6y6+2x9y6+x12y6+x5y7+2x8y7+2x11y7+x14y7+x4y8+2x7y8+2x10y8+x13y8+2x6y9+x9y9

+2x12y9+2x5y10+2x8y10+x11y10+2x7y11+x10y11+x6y12+2x9y12+x8y13+x7y14\ge2x5y3+2x4y4+2x7y4

+2x3y5+4x6y5+2x9y5+4x5y6+4x8y6+2x4y7+6x7y7+2x10y7+4x6y8+4x9y8+2x5y9+4x8y9+2x11y9

+2x7y10+2x10y10+2x9y11

(Rendezéssel, hogy mindkét oldalon pozitív tagok álljanak). A bal, illetve a jobb oldalon álló tagok súlyozott mértani közepe egyaránt (xy)7. Így reménykedhetünk abban, hogy kizárólag számtani mértani egyenlőtlenségekkel be tudjuk bizonyítani az állítást, és ez valóban így van: 54 darab számtani-mértani egyenlőtlenséget felírva és összeadva kapjuk a bizonyítandó állítást:

\frac{1+x^{5}y^{4}+x^{10}y^{5}}{3}\ge x^{5}y^{3}

\frac{x^{2}y+x^{4}y^{2}+x^{9}y^{6}}{3}\ge x^{5}y^{3}

\frac{1+x^{2}y^{4}+x^{10}y^{8}}{3}\ge x^{4}y^{4}

\frac{x^{2}y+x^{4}y^{2}+x^{6}y^{9}}{3}\ge x^{4}y^{4}

\frac{x^{2}y+x^{10}y^{5}+x^{9}y^{6}}{3}\ge x^{7}y^{4}

\frac{x^{6}y^{3}+x^{5}y^{4}+x^{10}y^{5}}{3}\ge x^{7}y^{4}

\frac{xy^{2}+x^{3}y^{3}+x^{5}y^{10}}{3}\ge x^{3}y^{5}

\frac{x^{3}y^{3}+x^{2}y^{4}+x^{4}y^{8}}{3}\ge x^{3}y^{5}

\frac{x^{3}y^{3}+x^{10}y^{5}+x^{5}y^{7}}{3}\ge x^{6}y^{5}

\frac{x^{3}y^{3}+x^{3}y^{6}+x^{12}y^{6}}{3}\ge x^{6}y^{5}

\frac{x^{2}y^{4}+x^{5}y^{4}+x^{11}y^{7}}{3}\ge x^{6}y^{5}

\frac{x^{5}y^{4}+x^{7}y^{5}+x^{6}y^{6}}{3}\ge x^{6}y^{5}

\frac{x^{4}y^{2}+x^{9}y^{6}+x^{14}y^{7}}{3}\ge x^{9}y^{5}

\frac{x^{8}y^{4}+x^{10}y^{5}+x^{9}y^{6}}{3}\ge x^{9}y^{5}

\frac{xy^{2}+x^{5}y^{4}+x^{9}y^{12}}{3}\ge x^{5}y^{6}

\frac{x^{4}y^{2}+x^{3}y^{3}+x^{8}y^{13}}{3}\ge x^{5}y^{6}

\frac{x^{4}y^{2}+x^{3}y^{6}+x^{8}y^{10}}{3}\ge x^{5}y^{6}

\frac{x^{4}y^{2}+x^{6}y^{6}+x^{5}y^{10}}{3}\ge x^{5}y^{6}

\frac{x^{6}y^{3}+x^{8}y^{7}+x^{10}y^{8}}{3}\ge x^{8}y^{6}

\frac{x^{6}y^{3}+x^{11}y^{7}+x^{7}y^{8}}{3}\ge x^{8}y^{6}

\frac{x^{8}y^{4}+x^{9}y^{6}+x^{7}y^{8}}{3}\ge x^{8}y^{6}

\frac{x^{10}y^{5}+x^{6}y^{6}+x^{8}y^{7}}{3}\ge x^{8}y^{6}

\frac{1+x^{5}y^{10}+x^{7}y^{11}}{3}\ge x^{4}y^{7}

\frac{xy^{2}+x^{4}y^{5}+x^{7}y^{14}}{3}\ge x^{4}y^{7}

\frac{x^{3}y^{3}+x^{8}y^{7}+x^{10}y^{11}}{3}\ge x^{7}y^{7}

\frac{x^{8}y^{4}+x^{6}y^{6}+x^{7}y^{11}}{3}\ge x^{7}y^{7}

\frac{x^{4}y^{5}+x^{7}y^{8}+x^{10}y^{8}}{3}\ge x^{7}y^{7}

\frac{x^{7}y^{5}+x^{6}y^{6}+x^{8}y^{10}}{3}\ge x^{7}y^{7}

\frac{x^{7}y^{5}+x^{8}y^{7}+x^{6}y^{9}}{3}\ge x^{7}y^{7}

\frac{x^{6}y^{6}+x^{5}y^{7}+x^{10}y^{8}}{3}\ge x^{7}y^{7}

\frac{x^{4}y^{5}+x^{14}y^{7}+x^{12}y^{9}}{3}\ge x^{10}y^{7}

\frac{x^{12}y^{6}+x^{11}y^{7}+x^{7}y^{8}}{3}\ge x^{10}y^{7}

\frac{x^{2}y^{4}+x^{10}y^{8}+x^{6}y^{12}}{3}\ge x^{6}y^{8}

\frac{x^{5}y^{4}+x^{4}y^{8}+x^{9}y^{12}}{3}\ge x^{6}y^{8}

\frac{x^{3}y^{6}+x^{6}y^{9}+x^{9}y^{9}}{3}\ge x^{6}y^{8}

\frac{x^{9}y^{6}+x^{4}y^{8}+x^{5}y^{10}}{3}\ge x^{6}y^{8}

\frac{x^{4}y^{5}+x^{12}y^{9}+x^{11}y^{10}}{3}\ge x^{9}y^{8}

\frac{x^{5}y^{7}+x^{14}y^{7}+x^{8}y^{10}}{3}\ge x^{9}y^{8}

\frac{x^{8}y^{7}+x^{11}y^{7}+x^{8}y^{10}}{3}\ge x^{9}y^{8}

\frac{x^{8}y^{7}+x^{7}y^{8}+x^{12}y^{9}}{3}\ge x^{9}y^{8}

\frac{x^{2}y^{4}+x^{5}y^{10}+x^{8}y^{13}}{3}\ge x^{5}y^{9}

\frac{x^{2}y^{4}+x^{7}y^{11}+x^{6}y^{12}}{3}\ge x^{5}y^{9}

\frac{x^{4}y^{5}+x^{11}y^{10}+x^{9}y^{12}}{3}\ge x^{8}y^{9}

\frac{x^{11}y^{7}+x^{6}y^{9}+x^{7}y^{11}}{3}\ge x^{8}y^{9}

\frac{x^{7}y^{8}+x^{10}y^{8}+x^{7}y^{11}}{3}\ge x^{8}y^{9}

\frac{x^{13}y^{8}+x^{6}y^{9}+x^{5}y^{10}}{3}\ge x^{8}y^{9}

\frac{x^{12}y^{6}+x^{12}y^{9}+x^{9}y^{12}}{3}\ge x^{11}y^{9}

\frac{x^{13}y^{8}+x^{9}y^{9}+x^{11}y^{10}}{3}\ge x^{11}y^{9}

\frac{x^{4}y^{5}+x^{10}y^{11}+x^{7}y^{14}}{3}\ge x^{7}y^{10}

\frac{x^{6}y^{9}+x^{9}y^{9}+x^{6}y^{12}}{3}\ge x^{7}y^{10}

\frac{x^{11}y^{7}+x^{12}y^{9}+x^{7}y^{14}}{3}\ge x^{10}y^{10}

\frac{x^{13}y^{8}+x^{8}y^{10}+x^{9}y^{12}}{3}\ge x^{10}y^{10}

\frac{x^{12}y^{9}+x^{7}y^{11}+x^{8}y^{13}}{3}\ge x^{9}y^{11}

\frac{x^{8}y^{10}+x^{10}y^{11}+x^{9}y^{12}}{3}\ge x^{9}y^{11}

Előzmény: [673] Blinki Bill, 2011-08-17 18:05:18
[678] Fálesz Mihály2011-08-18 14:57:15

Leírok egy lehetséges megoldást. (Nem saját; Ilja Bogdanovtól hallottam.)

A. 505. Az ABCD húrnégyszögben O1 és O2 az ABC, illetve az ABD háromszögbe írt kör középpontja. Az O1O2 egyenes a BC egyenest E-ben, az AD egyenest F-ben metszi.

(a) Igazoljuk, hogy létezik egy olyan k kör, ami E-ben, illetve F-ben érinti a BC és az AD egyenest.

(b) Mutassuk meg, hogy k érinti az ABCD négyszög köré írt kört is.

Javasolta: Nagy János (Budapest)

Megoldás. (a) Jelöljük a körülírt kört k0-nal, és legyen G,H,I rendre a kör AB, BC, DA íveinek felezőpontja. Az ABC háromszögben AH és CG szögfelezők, tehát O1 ezek metszéspontja; hasonlóan O2 a BI és DG húrok metszéspontja. Ismert továbbá, hogy O1 és O2 rajta van a G középpontú, A-n és B-n átmenő körön. Az O1O2G háromszög tehát egyenlő szárú.

A CO1E és DO2F háromszögekben


ECO_1\angle = \frac12 BCA\angle = \frac12 BDA\angle = O_2DF \angle

és

CO1E\angle=GO1O2\angle=O1O2G\angle=FO2D\angle,

tehát FEC\angle=DFE\angle. Ebből pedig következik, hogy létezik a BC egyenest E-ben, az AD egyenest F-ben érintő k kör.

(b) Legyen az AB és EF egyenesek metszéspontja P, a PG egyenes és k0 második metszéspontja T. (Ha AB és EF párhuzamosak, akkor P a két egyenes ideális pontja és T=G.)

A Pascal-tételt az ABCGTH (piros) hatszögre alkalmazva kapjuk, hogy AB\capGT=P, CG\capHA=O1 és BC\capTH egy egyenesen van; következésképp a TH egyenes átmegy az E ponton. Hasonlóan, a Pascal-tételt a BADGTI (zöld) hatszögre alkalmazva kapjuk, hogy a TI egyenes átmegy az F ponton.

A k0 körhöz H-ban és I-ben, illetve a k-hoz E-ben és F-ben húzott érintők párhuzamosak. Ezért a HE egyenes és az IF egyenes is átmegy a két kör külső hasonlósági pontján. Tehát HE\capIF=T a két kör külső hasonlósági pontja. De a hasonlósági pont csak akkor lehet rajta valamelyik körön, ha a két kör érinti egymást.

Előzmény: [672] HoA, 2011-08-17 11:50:13
[677] Fálesz Mihály2011-08-18 11:46:45

A számlálók barátságosan magas fokúak, és ez sokféle más megoldást lehetővé tesz. Például céltudatosan becsülhetjük a számlálókat az


a^3+b^3 \ge \frac23 \sqrt{ab}\big(a^2+ab+b^2\big) (*)

egyenlőtlenséggel, hogy utána felírhassuk a számtani és mértani közepek közötti egyenlőtlenséget a három tagra:


\frac{z^3 + y^3}{x^2+xy+y^2} + \frac{x^3 + z^3}{y^2+yz+z^2} + \frac{y^3 + x^3}{z^2+zx+x^2} \ge


\ge
\frac{\frac23 \sqrt{zy}\big(z^2+zy+y^2\big)}{x^2+xy+y^2}+
\frac{\frac23 \sqrt{xz}\big(x^2+xz+z^2\big)}{y^2+yz+z^2}+
\frac{\frac23 \sqrt{yx}\big(y^2+yx+x^2\big)}{z^2+zx+x^2} \ge


\ge
3\root3\of{
\frac{\frac23 \sqrt{zy}\big(z^2+zy+y^2\big)}{x^2+xy+y^2}\cdot
\frac{\frac23 \sqrt{xz}\big(x^2+xz+z^2\big)}{y^2+yz+z^2}\cdot
\frac{\frac23 \sqrt{yx}\big(y^2+yx+x^2\big)}{z^2+zx+x^2}}
 = 2\root3\of{xyz} = 2.

(*) egy lehetséges bizonyítása:


3(a^3+b^3) - 2\sqrt{ab}\big(a^2+ab+b^2\big) =
\big(\sqrt{a}-\sqrt{b}\big)^2\big(
3a^2+4a^{3/2}b^{1/2}+5ab+4a^{1/2}b^{3/2}+3b^2\big)\ge0.

Előzmény: [676] Maga Péter, 2011-08-18 08:41:47
[676] Maga Péter2011-08-18 08:41:47

Igazad van, ezt elnéztem. De akkor már (legalábbis nekem) egyszerűbbnek tűnik az a kiegészítés, hogy az x\geqy\geqz esetben az első két soromban minden egyenlőtlenség megfordul, és a rendezési tétel arra írható fel ugyanazzal az eredménnyel.

Előzmény: [675] Kemény Legény, 2011-08-18 07:31:19
[675] Kemény Legény2011-08-18 07:31:19

"Nyilván feltehető a x\leqy\leqz rendezés."

Ez igaz, de szerintem nem annyira nyilvánvaló. Az eredeti képletben csak a ciklikus szimmetria látszik ránézésre, ami alapján csak az tehető fel, hogy x\leqy\leqz vagy x\geqy\geqz. A teljes szimmetria nekem csak az alábbi egyenlőség miatt nyilvánvaló:

\frac{z^3 + y^3}{x^2+xy+y^2} + \frac{x^3 + z^3}{y^2+yz+z^2} + \frac{y^3 + x^3}{z^2+zx+x^2} = \frac{z^3 + x^3}{x^2+xy+y^2} + \frac{x^3 + y^3}{y^2+yz+z^2} + \frac{y^3 + z^3}{z^2+zx+x^2}

Értem én, hogy ez csak egy ötlet/vázlat volt a megoldáshoz, de ez a rész talán említésre méltó lehet.

Előzmény: [674] Maga Péter, 2011-08-17 20:15:45
[674] Maga Péter2011-08-17 20:15:45

Nyilván feltehető a x\leqy\leqz rendezés. Ekkor egyrészt

x3+y3\leqx3+z3\leqy3+z3,

másrészt

\frac{1}{x^2+xy+y^2}\geq \frac{1}{x^2+xz+z^2}\geq \frac{1}{y^2+yz+z^2}.

Ekkor a bizonyítandó egyenlőtlenség bal oldala a rendezési tétel értelmében alulról becsülhető azzal, hogy

\frac{x^3+y^3}{x^2+xy+y^2}+\frac{x^3+z^3}{x^2+xz+z^2}+\frac{y^3+z^3}{y^2+yz+z^2},

elég tehát erről megmutatni, hogy ez \geq2. Ennek egy tipikus tagja

\frac{x^3+y^3}{x^2+xy+y^2}=(x+y)\cdot\frac{x^2-xy+y^2}{x^2+xy+y^2}.

Innen már menni fog:), ha mégsem, szólj!

Előzmény: [673] Blinki Bill, 2011-08-17 18:05:18
[673] Blinki Bill2011-08-17 18:05:18

Sziasztok, kérhetnék egy kis ötletet (indítót) a B.4355-höz (április)?Köszönöm.

[672] HoA2011-08-17 11:50:13

Fel tudná tenni valaki az A 505. ( 2010. március ) lapban közölt megoldásának vázlatát? Itt csak egy statisztikát érek el és szeretnék a feladathoz hozzátenni valamit, de nem szeretnék ismétlésbe esni. Köszönöm.

[671] Szabó Attila2011-08-15 22:18:12

Nem tudja valaki, hogy miért nem kapott senki pontot a májusi mérési feladatra és miért nem javították ki a beküldött dolgozatokat?

[670] sakkmath2011-08-12 23:36:47

Igazad van, köszönöm. A vázlatom tehát alapos átdolgozásra szorul.

Előzmény: [666] Lóczi Lajos, 2011-08-12 14:29:44
[669] Róbert Gida2011-08-12 18:21:55

Akarom mondani: S(2n) végtelenbe tart, ha n tart végtelen volt a példa, ha jól emlékszem.

Előzmény: [668] Róbert Gida, 2011-08-12 18:01:19
[668] Róbert Gida2011-08-12 18:01:19

Voltak már hasonló példák, leginkább az S(2n) nem korlátos ősrégi N jelű feladatra gondolok.

B4360: Belátom először, hogy k=2 jó. Részben indukcióval csinálom. Állításom: S(2n)\ge \frac {S(n)}{9}. Ez n<10-re teljesül. Ha n\ge10 és n-nek van 5-nél kisebb számjegye, akkor ott elvágjuk n-et és indukcióval teljesül az állítás n-re is. Így feltehető, hogy n minden jegye legalább 5, akkor minden helyiértéken van átvitel a szorzásnál, így a következő jegy a szorzatban nem lehet nulla, hiszen (2*d+1)mod 10 a jegy, ami páratlan, így nem nulla. Azaz L jegyű n esetén S(n)\le9L (ez trivi), míg S(2n)\geL, hiszen a rákövetkező jegy mindig legalább 1. Kettőből: S(2n)\ge \frac {S(n)}{9}, ami kellett. Teljesen hasonló a biz. k=5-re is. Indukcióval ebből: S(2^a*5^b*n)\ge \frac {S(n)}{9^{a+b}}, így, ha k=2a*5b, akkor az megoldás lesz.

Más megoldás nincs: legyen k az L jegyű, így k<10L. Legyen N\geL tetszőleges, és w az az egyértelmű k-val osztható egész, amelyre w=10N+r, ahol 0\ler<k teljesül. Ekkor r=0 nem lehet, különben k|10N, de k akkor 2a*5b alakú szám lenne, ellentmondás. w osztható k-val, így legyen n=\frac wk. Indirekt feltevés miatt S(kn)\geckS(n), innen: S(n)\le \frac {S(w)}{c_k}=\frac {1+S(r)}{c_k}\le \frac {1+9L}{c_k}, azaz S(n) korlátos. (L és ck is konstans). És ez nem lehet.

Legyen n 10-es számrendszeres ábrázolása:

n=\sum_{i=0}^{s-1}d_i*10^{a_i}

, ahol di>0 és az a0<a1<...<as-1. Ekkor a0\leL, minden i-re, ai-ai-1\leL, as-1\geN-L, ezekből már kövekezni fog az ellentmondás, mert ekkor indukcióval: ai\le(i+1)L, de as-1\geN-L, így S(n)\ge s\ge \frac {N-L}{L}, azaz S(n) nem korlátos, ellentmondás.

Ha a0>L, akkor n osztható 10L-el, de akkor w=kn is, ellentmondás, mert N\geL, így w az 10L-el osztva r maradékot ad, de r nem nulla. w>10N és k<10L, így n=\frac wk>10^{N-L}, ezért as-1\geN-L. Végül minden i-re ai\leai-1+L, indirekte legyen: at>at-1+L esetén tekintsük az 10^N+r=w=kn=k\sum_{i=0}^{s-1}d_i*10^{a_i}, tekintsük ezt modulo 10at, ekkor r\equiv k\sum_{i=0}^{t-1}d_i*10^{a_i} \mod {10^{a_t}}, ez modulo nélkül is teljesül egyenlőséggel, mert k<10L és at-1+L<at. Azaz r=k*\sum_{i=0}^{t-1}d_i*10^{a_i}, jobb oldal osztható k-val, de a bal oldal nem, ellentmondás.

Előzmény: [663] Róbert Gida, 2011-08-12 01:09:50
[667] SmallPotato2011-08-12 17:33:01

Szép, igényes, és (számomra legalábbis) igen tanulságos munka!

Előzmény: [666] Lóczi Lajos, 2011-08-12 14:29:44
[666] Lóczi Lajos2011-08-12 14:29:44

Csak óvatosan! A 2.) lépésbeli 2. állításod általában nem igaz! Egy függvény grafikonja és inverze grafikonjának metszéspontja "bárhol" lehet!

Ezzel kapcsolatban lásd a megfelelő KöMaL-cikket, amely pl. elérhető itt:

www.berzsenyi.hu/erben/rlv/2010/abraham_gabor.ppt

Előzmény: [665] sakkmath, 2011-08-12 14:09:05
[665] sakkmath2011-08-12 14:09:05

Vázlat B.4358.-hoz:

1) Belátjuk, hogy \root3\of{92} és -11 nem gyökei az egyenletnek, s ezért a gyökökhöz ezt az egyenletet vizsgáljuk:

\frac{11x^{3}+80}{92-x^{3}}=\root3\of{\frac{92x-80}{x+11}}

2) Belátjuk, hogy a bal oldalon álló függvény a jobb oldalon álló inverze. A derékszögű koordinátarendszerben e két fv. grafikonja az y=x egyenesen metszi egymást.

3) A jobb (vagy a bal) oldalon álló kifejezést x - szel egyenlővé tesszük és a rendezések után ezt kapjuk:

x4+11x3-92x+80=0

4) Feltesszük, hogy van egész gyök. A szóba jövő egész gyökök a konstans tag osztói, ezért behelyettesítésekkel hamar kijön, hogy a gyökök: -10,-4,1 és 2.

Előzmény: [661] Blinki Bill, 2011-08-11 20:39:23
[664] Blinki Bill2011-08-12 08:14:57

Köszönöm a megoldásaidat, ötleteidet. Élő versenyen (nem levelezős), ahol nem használhatok programot, ott hogyan oldom meg a 10-ed fokú egyenletet? Blanka

Előzmény: [663] Róbert Gida, 2011-08-12 01:09:50
[663] Róbert Gida2011-08-12 01:09:50

B4360 Pontosan k=2a*5b alakú számok lesznek jók. Érdekes feladat.

Előzmény: [661] Blinki Bill, 2011-08-11 20:39:23
[662] Róbert Gida2011-08-12 00:13:30

B4358 Feladat nem írja (miért is írná), de csak a valós megoldásokat keressük (köbgyökvonás a komplexeknél már nem is egyértelmű). Az egyik tagot átviszem a másik oldalra, köbre emelem, hogy eltűnjön a köbgyök, rendezem, kapok egy 10-edfokú egyenletet:

1423*x10+14561*x9+3648*x7+341520*x6+2547264*x4+291840*x3-71127296*x+67927040=0 (Mathematica szerint) ennek -10,-4,1,2 gyöke, és a feladatnak is (ellenőrzés). A maradó polinom hatodfokú: g(x)=1423*x6-1092*x5+12012*x4+2432*x3+100464*x2+87360*x+849088. Ennek már nincs valós gyöke: |x|<1-re a konstans tag miatt pozitiv g(x), míg |x|>1-re: 1423*x6\ge1092*x5, 12012*x4\ge-2432*x3, 100464*x2\ge-87360*x, egyenlőtlenségeket használva: g(x)>0 itt is.

Előzmény: [661] Blinki Bill, 2011-08-11 20:39:23
[661] Blinki Bill2011-08-11 20:39:23

Sziasztok!

Feltenné vki a B.4358. és B.4360. feladatok megoldását?

Köszönöm: Blanka

[660] Lóczi Lajos2011-08-10 16:28:48

Mathematica 7-ben ha a feladatkitűzésnek megfelelően írjuk be a képleteket, akkor egy bonyolult logikai kombinációt ad ki eredményül, amelyről kideríthetjük, hogy azonosan igaz. Ám ha a konklúzióbeli egyenlőtlenség tagadását írjuk be, indirekt bizonyítás-szerűen, akkor a Reduce pár másodperc alatt kiadja, hogy "azonosan hamis".

Előzmény: [659] Róbert Gida, 2011-08-09 00:27:07
[659] Róbert Gida2011-08-09 00:27:07

Nézzük meg tudja-e oldani a Mathematica az A jelű feladatot:

a = (b*c*d - b - c - d)/(1 - b*c - b*d - c*d);

Timing[FullSimplify[(a + b)*(c + d) + (a + d)*(b + c) >= 4*Sqrt[(1 + a*c)*(1 + b*d)], a > 0 && b > 0 && c > 0 && d > 0]]

{21.965 Second, True}

Húha, megdolgozott a Mathematica a válaszért. Kicsit segítettem is neki, ha az "a"-t nem fejezem ki, akkor nem bizonyítja be, visszaadja az eredetit. Az persze kérdéses, hogy minden esetben szabályos-e ez, azaz amivel leosztok az nem nulla, esetleg b-vel, c-vel, d-vel eljátszhatom ezt, ha "a"-val nem.

Előzmény: [657] Tibixe, 2011-07-01 14:05:57
[658] Janosov Milán2011-08-03 00:57:06

Valaki tudja, az utolsó mérési feladat fura statisztikájának mi a magyarázata?

[657] Tibixe2011-07-01 14:05:57

Elég rögtön használni a számtani-mértani egyenlőtlenséget, homogenizálni és átrendezni.

(a+b)(c+d)+(a+d)(b+c) \ge 4\sqrt{(1+ac)(1+bd)}

A számtani és mértani közép közti egyenlőtlenség miatt 4\sqrt{(1+ac)(1+bd)} \le 4\frac{1+ac+1+bd}{2}=4+2ac+2bd. Ezért erősebb állítás, hogy

(a+b)(c+d)+(a+d)(b+c)\ge4+2ac+2bd

Kifejtve és kivonva:

ad+bc+ab+cd\ge4

A feltétellel szerint a+b+c+d=abc+abd+acd+bcd és itt mindkét oldal pozitív, tehát utóbbi két oldalával ekvivalens átalakításként szorozhatjuk az állítást:

(a+b+c+d)(ad+bc+ab+cd)\ge4(abc+abd+acd+bcd)

A zárójeleket felbontva és nullára rendezve:

a2b+a2d+ab2-2abc-2abd-2acd+ad2+b2c+bc2-2bcd+c2d+cd2\ge0

Ezt átírva:

(a+c)(b-d)2+(b+d)(a-c)2\ge0

Ez nyilván teljesül, mert nemnegatív teljes négyzetek nemnegatív együtthatós polinomja is nemnegatív.

Előzmény: [655] sakkmath, 2011-07-01 08:44:32
[656] sakkmath2011-07-01 09:01:36

Az előbbi név helyesen: Schwarz.

Előzmény: [655] sakkmath, 2011-07-01 08:44:32
[655] sakkmath2011-07-01 08:44:32

A KöMaL 2011/5-ös, májusi

számában megjelent

A.536. feladat egyik megoldása:

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]