[537] jenei.attila | 2006-11-13 11:12:11 |
Ha jól emlékszek, ez nem rég kömal feladat volt. Vegyük a PA PB közül a hosszabbikat (pl. PA-t), ezt P felé meghosszabítva B'-t vegyük fel úgy, hogy PB'=PB legyen. Ekkor PA+PB=AB'. F legyen a z hosszabbik AB ív felezőpontja. Könnyű bizonyítani, hogy az F középpontú körön, amely átmegy A-n és B-n, rajta van B' is. Ezért a kérdéses összeg akkor maximális, ha AB' átmérője az F középpontú körnek.
|
Előzmény: [533] fermel, 2006-11-12 22:59:26 |
|
|
[535] Csimby | 2006-11-13 02:44:16 |
Te jó ég ennyi hülyeséget mint amit az előbb írtam... Szóval, a Cosinus-tételben + helyett - van. És kell még az is, hogy ab akkor a legnagyobb, ha a=b, ez abból jön ki, hogy PAB területe = ahol állandó és a terület egyenlőszárú háromszögre a legnagyobb(hiszen ahol c állandó és mc nyilván egyenlőszárúra a legnagyobb), vagyis amikor a=b. Tehát 2(a+b)2a2+b2=c2+2abcos . Ahol a jobb oldal a=b-nél a legnagyobb és ekkor egyenlőség áll fenn, tehát a bal oldal is ekkor veszi fel a maximumát, vagyis a+b is. Nem írok több bizonyítást fél3-kor, elnézést... remélem azért így is érthető és most már jó is.
|
Előzmény: [534] Csimby, 2006-11-13 02:29:23 |
|
|
[533] fermel | 2006-11-12 22:59:26 |
Szervusztok fiatalok! Szerintem jónéhányan már a gyerekeim lehetnétek (a legnagyobb fiam 20 éves), de most szükségem lenne a segítségetekre. Egy apró segédtételre kellene nekem 3 bizonyítás. Egyet már sikerült összehoznom az a:sinalfa=b:sinbéta=c:singamma=2R (elnézést a kezdetleges írásmódért)felhasználásával,de többet csak nem akaródzik kitalálnom. A feladat a következő: Adott egy kör és benne egy AB húr. Mozgassunk egy P pontot a körvonalon. Bizonyítsuk be, hogy a PA+PB akkor maximális, ha P az AB húr által meghatározott két körvonal közül a nagyobbik(pontosabban a nem kisebbik) felezőpontjában van!(azaz az AB húr felezőmerőlegese és a "nagyobbik" körvonal metszéspontja) Köszönöm a segítséget! fermel
|
|
|
|
|
[529] BohnerGéza | 2006-11-10 19:23:02 |
Calyd [523] kérdésére: 2*2-es mátrixszal a síknak csak az origót helybenhagyó, egyenestartó leképezései adhatóak meg, míg a 3*3-as adott formájú mátrixszal pl. az eltolások, bármely pont körüli forgatás, tetszőleges tengelyre tükrözés, stb is.
A tetszőleges 3*3-as mátrix a tér origót helybenhagyó, síktartó leképesei leírására alkalmas. Ha ezt leszűkítjük úgy, hogy a z = 1 sík potjainak képe maradjanak a síkon, kapjuk a fenti speciális esetet.
|
Előzmény: [523] Calyd, 2006-11-09 17:37:28 |
|
[528] Calyd | 2006-11-10 05:58:54 |
Lóczi Lajosnak köszönöm szépen. Azóta persze megtalálta magam is, de itt is találtam hasznos információkat. ;)
|
|
|
|
[525] defog | 2006-11-09 20:08:26 |
Sziasztok! Az a helyzet, h kéne igazolnom 1 tételt, de nem találom seholse a bizonyítását. Ha valaki tudja, h kell bizonyítani azt, h a háromszög hozzáírható körének a sugara milyen kapcsolatban van a háromszög területével az segítsen pls. Előre is köszi!
|
|
|
[523] Calyd | 2006-11-09 17:37:28 |
Sziasztok!
Lehet, hogy a kérdés jobban illene valamilyen algebráról vagy programozásról szóló témába, de Bohner Gézának volt még itt anno egy hozzászólása, amelyben leírta egy alfa szögő forgatás mátrixát. Nekem erre lenne szükségem, csak éppenséggel térben. Szóval három dimenzióban hogy néz ki a forgatás? Nem tudom magamnak megfogalmazni, hogy mibe viszi a hagyományos egységvektorainkat egy forgatás térben. Továbbá az említett korábbi hozzászólásban "+1 dimenzió" van az origónak. Ez miért szükséges?
[ui: szerettem volna linket tenni a hozzaszolashoz, de a rendszer nem engedi]
|
|
|
|
|
|
[518] Cckek | 2006-10-18 20:19:07 |
Legyen M az ABC háromszög AB oldalának egy A-tol és B-től különböző pontja.Az CMB háromszög köré írt kör az AC oldalt másodszor N-ben metszi.Legyen O az AMN háromszög köré írt kör középpontja. Bizonyítsuk be, hogy AO merőleges BC-re. Elkelne a segítség. Köszi.
|
|
[517] Hajba Károly | 2006-10-15 16:58:11 |
Szerintem nem. Azt kell belátni, hogy legalább két olyan oldala van, hogy a tömegközéppontjának merőleges vetülete beleesik az oldallapba (v. az élére).
(Persze nem vizsgáltam, hogy a két feltétel között milyen összefüggés adódik.)
|
Előzmény: [516] Cckek, 2006-10-15 15:59:43 |
|
|
|
|
|