Fórum: GEOMETRIA
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78]
[6] lorantfy | 2003-12-20 21:55:41 |
Kedves Zanaty!
Kösz a gyors segítséget! Próbáltam már GIF-ben de rosszul választhattam meg a háttérszínt és konvártálás után pöttyös lett, így elvetettem. Most megpróbáltam átlátszó háttérrel és szuper. Mégegyszer kösz!
Üdv! L.
|
Előzmény: [5] Zanaty, 2003-12-20 18:06:19 |
|
[5] Zanaty | 2003-12-20 18:06:19 |
Kedves László!
Javaslom neked a GIF formátumot (CompuServe Graphics Interchange). Ez a kép az ábrád rekonstruciója, remélem segítettem.
|
|
|
[4] lorantfy | 2003-12-20 12:28:49 |
Kedves Csillag!
Gratulálok a tételedhez! És, hogy több megoldó legyen, gyorsan egy kis szemléltetés. Nagyon jó játék ez az Euklides program. Ez a két ábra kb. 3 perc alatt megvan. Ha valaki le akarja tölteni, a www.euklides.hu/hun/euklides.htm címen megtalálja. (Sajnos a vonalak kicsit elmosódottak, mivel a méret miatt JPG-be kell konvertálnom. Ha valaki tudd jobb módszert szóljon!)
|
|
Előzmény: [3] Csillag, 2003-12-19 19:38:04 |
|
[3] Csillag | 2003-12-19 19:38:04 |
Üdv Mindenkinek!
A most következő feladat megoldásáért jutalom jár!!! A megoldásokat e-mailben várom! Két díj lesz: 1. gyorsasági, 2. szépségdíj(ehhez határidő: március 31.). A nyertesekkel megbeszéljük, hogy milyen csokit szeretnek...
2. feladat: (Gáti Beatrix tétele:) Adott a síkon egy szabályos háromszög(ABC) és egy tetszőleges P pont. Bizonyítandó, hogy az ABP, BCP, CAP háromszögek Euler-egyenesei egy ponton mennek át, vagy párhuzamosak.
GB
|
|
|
[1] Csillag | 2003-12-18 21:17:42 |
Üdv Mindenkinek!
Ez a téma azért készült, hogy a geometria érdekes részeiről, tételeiről megosszuk élményeinket. Vágjunk bele:
1. feladat: Morley tétele: Egy tetszőleges háromszög szögeit az AY, AZ; BZ, BX; CX, CY egyenesek 3-3 egyenlő részre osztják. Bizonyítsuk be, hogy az XYZ háromszög szabályos.
GB
|
|
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78]