Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: GEOMETRIA

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]  

Szeretnél hozzászólni? Jelentkezz be.
[612] jenei.attila2007-01-29 14:01:30

Vegyük fel az OP félegyenesen az S pontot úgy, hogy PS=r legyen, és P legyen O és S között. Ekkor KS szakasz felező merőlegesének, és OP-nek metszéspontja adja C-t.

Előzmény: [611] lorantfy, 2007-01-27 11:14:46
[611] lorantfy2007-01-27 11:14:46

102. feladat: Adott az O középpontú R sugarú kör és belsejében az O-tól különböző, K középpontú r sugarú kör. Szerkesszönk olyan kört, mely a nagy kört egy adott P pontban érinti és érinti a kisebb kört is!

[610] BohnerGéza2007-01-25 12:11:02

101. feladat: ( Megpróbálom, hátha sikerül sorszámozni a további feladatokat. )

[609] Cckek2007-01-14 08:49:35

Köszönöm ezeket a gyönyörű megoldásokat.

Előzmény: [594] Cckek, 2007-01-08 21:12:11
[608] epsilon2007-01-11 11:49:45

Köszi, megnéztem, hát onnan látszik a feladat "fajsúlya" ;-)

[607] nadorp2007-01-11 11:17:13

Nézd meg a megoldást az Érdekes matekfeladatok [349] hozzászólásában.

Előzmény: [606] epsilon, 2007-01-11 11:14:12
[606] epsilon2007-01-11 11:14:12

Hmmmm....hát kellett nekem :-) valóban implicit, mégis valamivel barátságosabbra gondolta, ez is a körszeletekből származik? Mert Én úgy próbáltam, hogy 2 szembennálló körszelet összegeként fogtam fel, a 2 körben, ott egzenlőre a sugár ami ismeretlen, meg 2 középponti szög, persze lehet kifejezni...de gyökös összefüggések lettek :-( Ha jó hallottam, ezt a feladatot valamikor a Danubiusz rádióban adták fel, és azt szeretném megtudni, hogy vajon milyen megoldást vártak volna el, pontosabban milyen eredményt, a helyes megoldásként...vagy csak szívatás volt?

[605] nadorp2007-01-11 10:43:28

Itt az összefüggés.

\sin\alpha-\alpha\cos\alpha=\frac\pi2, és innen R=2\cos\frac\alpha2, vagy ha jobban tetszik

\sin\left(2arc\cos\frac{R}2\right)-2arc\cos\frac{R}2\cos\left(2arc\cos\frac{R}2\right)=\frac\pi2

R\sqrt{1-\frac{R^2}4}-\left(\frac{R^2}2-1\right)2arc\cos\frac{R}2=\frac\pi2

R\sqrt{1-\frac{R^2}4}-(R^2-2)arc\cos\frac{R}2=\frac\pi2

Előzmény: [604] epsilon, 2007-01-11 10:17:34
[604] epsilon2007-01-11 10:17:34

Helló nadorp! Bár egy implicit összefüggés is jó lenne, hátha?

Előzmény: [601] epsilon, 2007-01-10 22:07:38
[603] epsilon2007-01-11 10:15:43

Helló Cckek! Az igazolása affixumokkal csak algebrai számolás. Az illető csúcs megfelelő kisbetűjével jelölve az illető affixumot, a bizonyítandó összefüggés: 4(o1-h)+ 4(o2-h)+ 4(o3-h)= 15(g-h) vagyis 4(o1+o2+o3)=15g-3h és legyen a köréírt kör középpontja éppen az O origó, ekkor g=(a+b+c)/3 és h=a+b+c, és így elegendő bizonyítani, hogy: 2(o1+o2+o3)=a+b+c (*). Az előző indoklás alapján PO vektor=2 RO1 vektor (a az indoklást lásd előbb) és ezt affixumokkal felírva 0-p=2(o1-r)továbbá p=(b+c)/2, r=(m+n)/2 és az m, n a felezőpontokra vonatkozó affixumokat is használva, o1=a/2 adódik és analógjai (ezt még másképpen is bizonyíthatjuk) és a (*) összefüggés így valóban teljesül. (a bizonyítandó kép a hszm alján van!)

Előzmény: [593] HoA, 2007-01-08 15:59:17
[602] nadorp2007-01-11 09:55:45

Szerintem nem fogsz találni. Ez R-ben egy transzcendens egyeneletre vezet. ( Ilyen pld. az x=sinx is).

Előzmény: [601] epsilon, 2007-01-10 22:07:38
[601] epsilon2007-01-10 22:07:38

Kösz a megjegyzést, valóban ott van, most olvastam az ott leírt megjegyzéseket, ...de nem bíztatóak, valamilyen kifejezést szeretnék találni az R függvényében (nem megközelítő megoldást)de a körszeletekkel elindulva, két körszeletből összerakva egyenlőre semmi bíztató nem jött ki (még maradt kiküszöböletlen paraméter is :-(

[600] psbalint2007-01-10 21:44:42

azt hiszem éppen erről a feladatról volt szó az Érdekes matekfeladatok topikban

[599] epsilon2007-01-10 20:48:52

Helló! BÚÉK Mindenkinek! Létezik-e elemi megoldás a következő, ismertnek tűnő feladatra: Adott egy 1 egységsugarú körlap. Annak kerületén vegyünk fel egy tetszőleges M pontot, és az M középponttal, R sugárral rajzoljunk egy körívet, ami az adott körlapot két kükönböző pontban metszi. Mekkora kell legyen az R, hogy a "közrezárt" síkrész területe az 1 sugarú kör területének a fele legyen? Előre is kösz az esetleges támpontokat! Üdv: epsilon

[598] HoA2007-01-10 15:51:57

A bizonyítás, ahol egy 3-as szorzóval elszámoltam magamat :-) : Cckek jelöléseivel ( ha már... ), legyen a körülírt kör középpontja O, a Feuerbach köré F, MN felezőpontja R. ABC \Delta az AMN \Delta A-ból vett kétszeres nagyítása, így \vec{PO} = 2 \vec{RO_1} . AMN \Delta és PNM \Delta egymás tükörképei R-re, ezért \vec{FR} = \vec{RO_1} , vagyis \vec{FO_1} = \vec{PO}.

4 \vec{HO_1} = 4(\vec{HF}+\vec{FO_1}) = 4(\vec{HF}+\vec{PO}) = 4(\vec{HF}+\vec{GO}-\vec{GP}). Hasonlóan 4 \vec{HO_2} = 4(\vec{HF}+\vec{GO}-\vec{GN}) és 4 \vec{HO_3} = 4(\vec{HF}+\vec{GO}-\vec{GM}) A hármat összeadva \vec{GP}, \vec{GN} és \vec{GM} kiesik, mert egy \Delta súlyvonalainak harmadai, így vektorösszegük \vec0 . Igazolandó : 12( \vec{HF}+\vec{GO}) = 15 \vec{HG} . Legyen az Euler-egyenesen \vec{FG} = \vec{e} . Ekkor \vec{GO} = 2\vec{e} , \vec{FO} = \vec{HF} = 3\vec{e} és \vec{HG} = 4\vec{e} . Egyenlőségünk tehát 12(3\vec{e} + 2\vec{e}) = 15 ( 4\vec{e} ) , amit már nem nehéz belátni.

Előzmény: [595] HoA, 2007-01-09 11:13:46
[597] BohnerGéza2007-01-10 12:23:18

A szokottól eltérő felbontású monitorral dolgoztam, ezért lett ilyen nagy az előző hozzászólásom.

Előzmény: [596] BohnerGéza, 2007-01-09 20:22:15
[596] BohnerGéza2007-01-09 20:22:15
Előzmény: [594] Cckek, 2007-01-08 21:12:11
[595] HoA2007-01-09 11:13:46

Szerintem a jobboldal csak 5 \vec{HG}

Előzmény: [594] Cckek, 2007-01-08 21:12:11
[594] Cckek2007-01-08 21:12:11

Legyen G az ABC háromszög súlypontja, H az ortocentruma, M, N, P az AB, AC, BC oldalak felezőpontjai, O1,O2,O3 az AMN, BMP illetve CNP háromszögek köré írt körök középpontjai. Bizonyítsuk be hogy : 4\vec{HO_1}+4\vec{HO_2}+4\vec{HO_3}=15\vec{HG}

[593] HoA2007-01-08 15:59:17

Mivel két hete senki sem szólt hozzá, leírok egy megoldást. Nézzük meg, mi a mértani helye a síkban azoknak a pontoknak, melyekre az ABC \Delta csúcsaitól mért távolságok négyzetösszege

PA2+PB2+PC2=K(1)

adott konstans?

(\vec{P}-\vec{A})^2 + (\vec{P}-\vec{B})^2 + (\vec{P}-\vec{C})^2 = K

3 \vec{P}^2 + (\vec{A}^2 +\vec{B}^2 +\vec{C}^2) - 2 \vec{P} (\vec{A} +\vec{B} +\vec{C}) = K Ha origónak az ABC \Delta S súlypontját választjuk, \vec{A} +\vec{B} +\vec{C} = \vec0 ; \vec{P}^2 = \frac13 ( K - (\vec{A}^2 +\vec{B}^2 +\vec{C}^2)) , ami adataink által meghatározott konstans. A mértani hely tehát egy S középpontú kör, a sugár négyzete a jobboldali kifejezés, ami akkor nemnegatív, ha K \ge (\vec{A}^2 +\vec{B}^2 +\vec{C}^2) (1) baloldala tehát akkor a legkisebb, ha P a súlypont, értéke ekkor \vec{A}^2 +\vec{B}^2 +\vec{C}^2 . Most már csak azt kell igazolni, hogy ez megegyezik a háromszög oldalai négyzetösszegének harmadával. De a^2 + b^2 + c^2 = (\vec{B}-\vec{C})^2 +(\vec{C}-\vec{A})^2 + (\vec{A}-\vec{B})^2= 2 (\vec{A}^2 +\vec{B}^2 +\vec{C}^2)- 2(\vec{A}\vec{B} + \vec{B}\vec{C} + \vec{C}\vec{A} ) Origó választásunk miatt (\vec{A} +\vec{B} +\vec{C})^2 = \vec0^2 = 0 = \vec{A}^2 +\vec{B}^2 +\vec{C}^2 + 2 (\vec{A}\vec{B} + \vec{B}\vec{C} + \vec{C}\vec{A}) Innen -2(\vec{A}\vec{B} + \vec{B}\vec{C} + \vec{C}\vec{A} ) = \vec{A}^2 +\vec{B}^2 +\vec{C}^2 Tehát valóban a^2 + b^2 + c^2 = 3 (\vec{A}^2 +\vec{B}^2 +\vec{C}^2)

Előzmény: [588] BohnerGéza, 2006-12-25 22:50:17
[592] Sirpi2007-01-05 16:10:42

Ezt hívják Euler-egyenesnek, és ráadásul az S pont harmadolja (O-hoz közelebb) az OM szakaszt.

Egybe akkor és csak akkor esnek, ha a háromszög szabályos.

Előzmény: [591] Cckek, 2007-01-05 16:04:29
[591] Cckek2007-01-05 16:04:29

Igaz-e, hogy bármely háromszögben az ortocentrum, a súlypont és a háromszög köré írt kör középpontja kollineárisak? (vagy egybeesnek:)

[590] HoA2006-12-29 18:17:43

Segítség az egyik fajta megoldáshoz: Mi a mértani helye a síkban azoknak a pontoknak, melyekre

PA2+PB2+PC2=K(1)

adott konstans?

Előzmény: [588] BohnerGéza, 2006-12-25 22:50:17
[589] HoA2006-12-27 10:11:54

BohnerGéza ábrája alapján ha az \alpha,\beta,\gamma paraméterekkel kifejezett koordinátákra felírjuk az \vec{AA}_1 + \vec{BB}_1 + \vec{CC}_1 = \vec0 vektoregyenletet, rövid számolás után kapjuk, hogy \alpha=\beta=\gamma , vagyis P (Cckek-nél M) = \frac13 * ( \vec{A} + \vec{B} + \vec{C} ) , vagyis M a súlypont.

Ha [582] "akkor" ágának bizonyítására elfogadjuk az [586] ábráját, a "csak akkor" ágra itt egy - talán kicsit szemléletesebb - bizonyítás. Legyenek a háromszög oldalfelező pontjai A0,B0,C0 , a súlypont S, továbbá M, A1,B1,C1 [582] szerint. A súlyvonalak a háromszöget hat kis háromszögre osztják. Az általánosság megszorítása nélkül feltehetjük, hogy M a C0BS háromszög belsejében vagy határán van. Mivel pl. \vec{AA}_1 = \vec{AA}_0 + \vec{A_0A}_1 és tudjuk, hogy \vec{AA}_0 + \vec{BB}_0 + \vec{CC}_0 = \vec0 , \vec{AA}_1 + \vec{BB}_1 + \vec{CC}_1 = \vec0 pontosan akkor teljesül, ha

\vec{A_0A}_1 + \vec{B_0B}_1 + \vec{C_0C}_1 = \vec0 (1)

. Ha a három vektor összege 0, akkor tetszőleges irányú vetületüké is az. Tekintsük az mc magasságra vett vetületeket - az mce egységvektorral vett skaláris szorzatokat. Ez \vec{C_0C}_1 esetében nyilván 0. M választása miatt A1 nincs messzebb B-től, mint A0 és B1 nincs messzebb A-tól, mint B0 . Így \vec{A_0A}_1 * \vec{m}_{ce} \ge 0 és \vec{B_0B}_1 * \vec{m}_{ce} \ge 0 . Ezért (1) csak úgy teljesülhet, ha A0=A1 és B0=B1 , vagyis M=S.

Előzmény: [587] BohnerGéza, 2006-12-25 22:49:35
[588] BohnerGéza2006-12-25 22:50:17

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]