Átfutottam a korábbi hozzászólásokat és egy dologról senki sem írt - bár lehet csak én nem vettem észre. IMO-n a feladatok algebra, geometria, számelmélet, kombinatorika témakörből kerülnek ki átlagosan nagyjából egyenlő mennyiségben, így - gondolom én - ezen témaköröket egyformán kéne megjeleníteni versenyeken. De ez koránt sincs így. Ahogyan én látom, sokan megmaradnak annál, hogy a magyarok a "kombinatoristák", abban tudunk nagyot villantani, főleg kombgeoban és a versenyeken ezen témákra tűznek ki feladatokat sokkal inkább, mint mondjuk számelméletben.
Egy feladatot, mivel akár több módon meglehet közelíteni nem feltétlen tudjuk egy témába bedobni, de nézzük meg a komolyabb versenyeken milyen feladatok voltak.
MEMO: ahogy mindig, algebra, kombinatorika, geometria, számelmélet. Ezek nehézsége mondjuk mélyen az IMO alatt volt, 2-en 4-példáztak a 6-ból, 3-an pedig elolvasási hiba miatt nem tudtak megoldani 1-et,1-et, így lett 3 feladatuk-epszilon=ezüst. Így a MEMO-t vegyük ki a további utalásokból.
Kürschák: algebra,kombinatorika,kombgeo/analízis(?).
Téli táborban van pár ún. IPS, de ezek általában nem kif. nehezek, a Tata testen lehetnek nehéz példák. Ezek algebra, "vektoros" geo, kombinatorika voltak.
Válogatók:
1. algebra, kombinatorika, számolásos geometria
2. kombinatorikus számelmélet, geometria, függvényegyenlet(algebra)
Év közben volt még a Romanian Master of Mathematics, ahol 6-an vettek részt.
1.nap: kombinatorika, geometria, algebra
2.nap: számelmélet, kombinatorika, geometria.
Na nézzük. Két számelmélet volt, egyik a második válogató első példája, ujjgyakorlat volt kb. mindenkinek, nem irányadó. Tehát azt, hogy ki milyen számelméletből egyes egyedül RMMC egyik példája mérte, ahol 6-an voltak a kb. 10 IMO-esélyesből(és az akadályt nem nagyon vették). Volt még persze KöMaL-ban pár példa(A. 562. ,B. 4421.,A. 550.,B. 4401.) a témából(a két A-példára 1 illetve 2 megoldó jutott, B-kre se sokak...), így a számelmélet szinte teljesen kimaradt a szelekcióból(pláne hogy a 6-ból 3 olimpikon csinált A-t, és egyik B-t se mint már elmondott).
Tehát a számelméletről kijelenthetjük: nem mérték le, ki milyen jó belőle. Idén szerencsére (?) csak 1 volt a 6-ból sz.e. IMO-n.
Algebra. RMMC-n senki nem oldotta meg, a többit a többség, 1. példák voltak. Tehát remekül le lett mérve ki tud egyszerű algebrát kihozni. De nehezet? A-ban volt pár, bár ott se a nehezek általában. Volt még a második válogató 3-as példája. Arról pontosan nem tudom hányan oldották meg, ha mindenki igazat mondott és nem hagytam ki senkit, akkor 3-an.
Algebrán belül külön fontos az egyenlőtlenség és a függvényegyenlet. Előbbire volt egy A-példa, de versenyeken semmi több, nem lett lemérve, holott szinte biztos volt egy idei IMO-ineq. Függvényegyenlet? Egy éve volt az olimpiai felkészítésen egy -amúgy baromi hasznos gyorstalpaló, de azóta klasszikus fvegyenleteket sehol sem mértek magyar részről.
Így az IMO 2 példája is olyan volt, amire nem válogattak. Néztek több helyen algebrát, de a két IMO-klasszikus részét nem.
Geometria. RMMC-n volt kettő is, senki nem oldotta meg magyar részről, egyiket talán mert senki nem hallott egy máshol -mint kiderült- elég közismert trükkről, másikat meg összvissz 4-en. A tatai példa rémegyszerű volt, szinte mindenki kész lett vele fél óra alatt. Maradt a két válogató geoja... Egyik számolásos volt, másik pedig nehezebb (szerintem) a mostani IMO/5-nél, nem is oldotta meg senki. Így ebben a témában vagy rémegyszerű, vagy a válogatáshoz túl nehéz példák szerepeltek, itt sem jött létre igazi válogató. KöMaL B 5-pontosok se voltak "igazi" számolásmentes geometriák, bár az utolsó hónap 5 pontosa kihozható volt trükkös körök hatványvonalai segítségével. A-ban voltak dögivel a klassz példák, amik közül nem egy megfelelő példa lett volna szerintem válogatóra, de megoldóik száma... magyar IMO-tag megoldóik száma 3 esetben is 0. IMO-n volt két geo, egyik trivi, meg is lett mindenkinek, másik meg senkinek.
Maradt a híres-neves kombinatorika. Minden versenyen volt, hol könnyebb, hol nehezebb, hol mindenki megoldotta, hol senki sem. Végülis ezt elég jól lemérték, kik mire képesek :) . Bár szívünk csücske a kombgeo Kürschák/3 kivételével megjelent csak a B. 4380., B. 4451. feladatokban - az IMO-megoldók száma itt se sok, de az összesé sem.
Tehát akkor mi lett lemérve? Válasz: kombinatorika-skill. Szinte semmi más, annyi még talán hogy ki a stabilan versenyző. IMO-n 1 kombinatorika volt, nehézsége miatt nem is oldotta meg magyar.
Gondolom érezhető, hogy ebben személyes vonatkozás is van, ezt nem tagadom, számelmélet meg geometria az amiben erősebb vagyok. Lehet ez csak idén jött össze így, de a lényeg: a továbbiakban nem kéne a kombinatoristákra gyúrni- főleg ha nincsenek igaziak, mint mondjuk egy tavalyi és azelőtti olimpikon (Dankovics Attila).
|