Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Matematikai Diákolimpia

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]  

Szeretnél hozzászólni? Jelentkezz be.
[220] HaliPeu2012-08-07 22:46:26

Olimpiai szakkör tudtommal csak minden második héten van. A köztes hetekben nyugodtan lehet Debrecenben bármilyen szakkör. Persze Budapesten kívül nehéz országos szintű szakkört tartani, mert nem fognak az egész országból odautazni.

[219] jonas2012-08-06 22:16:14

Sőt, az olimpiai felkészítő szakkört is átrakjátok minden második héten Debrecenbe? Az igazságosabb, mert mindenkinek csak minden második héten kell utaznia.

Előzmény: [218] RMG, 2012-08-06 22:02:13
[218] RMG2012-08-06 22:02:13

Schultz János kollégámmal már felvetettük ezt a témát Dobos Sándornak egy korábbi, hatszemközti megbeszélésen. Nagyon pozitívan reagált erre gondolatra. Akkor azt is javasoltuk, hogy talán csökkenthetők a költségek azzal, ha nem mindenkinek kell felutaznia Pestre. Ahogy ezt Erben Péter is javasolta, ki lehetne jelölni vidéki helyszíneket is. Ez nemcsak a költségek szempontjából lenne kedvező, hanem azért is, mert a vidéki versenyzőknek nem túl kellemes hajnali kelés és 2-3 óra utzás után megírni a versenydolgozatot. Szeretnénk, ha minél többen és minél több helyen beszélnének ezekről a kérdésekről.

Előzmény: [217] Maga Péter, 2012-08-06 17:34:34
[217] Maga Péter2012-08-06 17:34:34

A szállásdíj valóban csak egy apró részlet, csupáncsak azt demonstrálandó írtam, hogy az OKTV döntő két napos lebonyolítása nem kétszer annyiba kerül, mint az egy naposé.

Kívánatos lenne (legalább) egy országos versenyt az olimpiához hasonlatossá tenni, és az OKTV kézenfekvő erre a célra. Viszont kellene ehhez valamilyen támogatót is találni. Ugyanis az egy napos döntő tényleg fillérekből megvan: gondolom, a bizottsági tagok tiszteletdíja szemérmetlenül alacsony (ha kapnak egyáltalán valamit); azon kívül néhány termet kell az ELTE-n lefoglalni egy délutánra, valamint van még némi adminisztrációs költség. Ilyen jellegű rendezvényél a szállás-étkezés az eddigiekhez képest lórúgás.

Nincsenek illúzióim azt illetően, hogy minisztériumi illetékesek olvasnák ezt a fórumot, de olyan akár lehet is közöttünk, akinek vannak ismerősei a felsőbb körökben, és tud a megfelelő helyen pár jó szót szólni az utánpótlás érdekében.

Vagy ha van itt OKTV bizottsági tag, akkor elmondhatná, hogy milyen praktikus akadályai vannak egy két napos döntőnek.

Előzmény: [216] janomo, 2012-08-06 15:24:27
[216] janomo2012-08-06 15:24:27

De nem , hát egyszerüen csak nevetséges, hogy komoly dolgokrol beszélünk, változásokról, konstruktivákról jobb versenyrendszerről stb és akkor ilyen piti dolgok előkerülnek mint a szálláspénz, ez nyilván nem egy fontos kérdés.

Eyébként jonas ott tali, bar jacussi nincs ha nem baj.

Előzmény: [215] vogel, 2012-08-05 21:21:01
[215] vogel2012-08-05 21:21:01

Neked pedig az empátia nem volt megírva.

Előzmény: [212] janomo, 2012-08-05 14:48:28
[214] Erben Péter2012-08-05 19:31:47

Erre a problémára megoldást jelenthetne, ha - a Kürschák versenyhez hasonlóan - az OKTV döntőt is meg lehetne írni több városban.

Előzmény: [207] Maga Péter, 2012-08-04 12:48:13
[213] jonas2012-08-05 18:03:36

janomo a naiv meghív minket a Gellért-hegyi villájába, hogy egy ital mellett megbeszéljük a dolgot?

Előzmény: [212] janomo, 2012-08-05 14:48:28
[212] janomo2012-08-05 14:48:28

Najo ezt most egyrészt nem hiszem el.

Másrészt senki nem mondta hogy nem kell áldozatokat hozni ha el akarsz érni valamit és ha ennyit nem tudsz kiszedni más dolgokból, hát akkkor istenem nem az oktv szereplés volt neked megirva.

Előzmény: [211] Antal János Benjamin, 2012-08-04 22:09:49
[211] Antal János Benjamin2012-08-04 22:09:49

janomo, hidd el van, akit földhözvágna. Prog OKTV-n (mivel reggel kezdődött, vidékieknek előző este fel kellett menni) volt olyan gyerek, aki úgy tudott csak eljönni, hogy a suli fizette. Nekem (szüleimnek) is okozott egy kis fejfájást, hogy honnan teremtsen elő 10-12 ezer forintot.

[210] janomo2012-08-04 18:19:45

Na, azért szerintem senkit nem vágna haza ha mondjuk a szállást magának kéne fizetnie

Előzmény: [207] Maga Péter, 2012-08-04 12:48:13
[209] Tibixe2012-08-04 15:44:01

Azért az IMO nem a világ, utána is van élet. Mivel a diákok egy része magyar matematikus lesz, nem baj, ha abból kapnak több felkészítést, amihez a magyar matematikusok amúgy is értenek. Magyarország presztízse kombinatorikából sokkal értékesebb, mint a jó IMO-szereplőként szerzett presztízse valaha lehetne. Ezért pl. az IMO-nál amúgy is régebbi Kürschák versenyen joggal lehetnek "magyaros" feladatok.

Előzmény: [201] m2mm, 2012-08-03 19:29:26
[208] Maga Péter2012-08-04 13:01:09

,,Úgy vélem erre pl. ügyelni kellene a feladatok kitűzésekor. Alig-alig fordul elő függvényegyenlet, egyenlőtlenség, nem triviális számelmélet feladat, holott ezekből havonta (típusonként) legalább 1, de inkább 2 feladatnak szerepelni kellene. Nincsennek olyan cikkek, amelyek a 70-es 80-as, de még a 90-es években is rengeteget segítettek azoknak a tehetséges, de nem feltétlenül spec. mat.-os gyerekeknek, akik fejlődni akartak matematikából.''

Ha jól tudom, a szerkesztőség örömmel fogad minden feladatjavaslatot és cikket. Hajrá!:)

Előzmény: [206] sulc, 2012-08-03 23:08:16
[207] Maga Péter2012-08-04 12:48:13

,,Jó lenne áttérni a nemzetközi mezőnyben megszokott 2 napos versenyekre, ahol a példák a nemzetközi trendekhez igazodnak (...)''

Ez valóban üdvözlendő lenne. Kérdés, hogy honnan lehet az ehhez szükséges pénzt előteremteni. Egy OKTV döntő esetében, úgy tudom, az iskolák többsége az utazást megtéríti a diákjainak (de feltehetően már ezt sem minden iskola csinálja). Ez egy Budapesttől távolabbi település esetében is csak pár (3-4) ezer forint, ennél már két napnyi szállás-étkezés is jóval több.

Előzmény: [205] sulc, 2012-08-03 22:39:40
[206] sulc2012-08-03 23:08:16

Nagyon igazságtalannak gondolom, ha pl. az idei gyengébb szereplést egyesek csak a válogatást végzők nyakába akarják varrni. Itt sokkal mélyebb dolgok hatnak/játszanak közre. Aki követi a nemzetközi matematika fórumokat, folyóiratokat (pl. mathlinks, CRUX), az láthatja, hogy sajnos a KöMaL "B" pontversenye pl. mennyire nem alkalmas a fiatalabb (leendő) versenyzők IMO felkészítésére. Úgy vélem erre pl. ügyelni kellene a feladatok kitűzésekor. Alig-alig fordul elő függvényegyenlet, egyenlőtlenség, nem triviális számelmélet feladat, holott ezekből havonta (típusonként) legalább 1, de inkább 2 feladatnak szerepelni kellene. Nincsennek olyan cikkek, amelyek a 70-es 80-as, de még a 90-es években is rengeteget segítettek azoknak a tehetséges, de nem feltétlenül spec. mat.-os gyerekeknek, akik fejlődni akartak matematikából. Más. Évek óta úgy érzem, hogy a felkészítés nagyon kevés ember nagyon sok munkáján múlik. Ezt sajnos a közismert hazai viszonyok között nagyon nehéz töretlen lelkesedéssel végezni. Több embernek (Phd hallgatók, volt olimpikonok, stb.) kellene úgy érezni, hogy talán tudnának segíteni. Biztos vagyok benne, hogy a központi, vagy a vidéki olimpiai szakkörök vezetői nem zárkóznának el ez elől. Más. A vidék vs. főváros, vagy a Fazekas vs. többi típusú gondolkodás nem vezet sehová, értelmetlen és csak felesleges sértődésekhez vezet. Szegedi tanárként hálás vagyok mindazoknak a fővárosi és nem ottani tanároknak ill. diákoknak, akik segítették a radnótis diákokat abban, hogy arra a tudásra szert tegyenek, ami alapján olimpikonná válhattak. Végül: a diákolimpiára fel lehet készülni. Meggyőződésem, hogy a 6-ból 3 példa megoldására igenis van egy adott korosztályban kb. 10 ember az országban, akinek az észbeli képessége megvan. Nem ők hibáznak. A felelősség a miénk: felkészítőké. Remélem a jövőben többen leszünk. V

[205] sulc2012-08-03 22:39:40

Érdeklődéssel követtem az elmúlt hetekben kialakult beszélgetést az IMO kapcsán. Néhány észrevételt szeretnék tenni, mint felkészítő tanár. Úgy vélem, hogy a kialakult hagyomány (hogy ti. a válogatás erősen szubjektív szempontokat is figyelembe vesz) nem ok arra, hogy ne mozduljunk el egy támadható, de alapvetően igazságosabb, az elvégzett munkát mindenképpen jobban mérő válogatás felé. Alapvetőnek gondolom azt, hogy aki a KöMaL pontversenyben nem végez érdemi munkát az ne lehessen csapattag, bármennyire is "penge" a gondolkodása. Egy versenyen tapasztalataim szerint az is számít, hogy mennyi ballasztja van a diáknak: értve ezen a megoldások leírásának rutinját vagy csak azt, hogy egy-egy példán akkor is töröm a fejem, ha nem szimpatikus, csak mert "muszáj", ha jól akarok szerepelni a pontversenyben. Sajnos alapvető gondok vannak a felkészülésben fontos versenyrendszerünkkel. Még a speciális matematika tagozatos OKTV is messze van az IMO feladatainak típusaitól. Jó lenne áttérni a nemzetközi mezőnyben megszokott 2 napos versenyekre, ahol a példák a nemzetközi trendekhez igazodnak (pl. a Kós Géza, vagy Maga Péter által említett short list-ek). Tudomásul kell venni, hogy elmegy mellettünk a világ, ha ragaszkodunk az egykor remekül működő hagyományainkhoz. Folyt. köv.

[204] m2mm2012-08-03 20:48:17

Idén 4 IPS volt és messze nem olimpiai szint(egyik nap 3-as példa egy Pell-egyenlet gyakorlatilag).

Előzmény: [203] HaliPeu, 2012-08-03 20:41:32
[203] HaliPeu2012-08-03 20:41:32

A téli táborban 3 feladatsor, egyenként 3 feladat. Az első nagyon egyszerű, a második kb olimpiai 1-es példa nehézség, a harmadik valamivel nehezebb. Egy feladatsorra kb 2,5 óra idő van. Leginkább egy versenyző teljesítményének stabilitását méri, hiszen azért elérhető 3 példa, de nem triviálisan (hiszen kevés az idő). Aki ezen kb 8 példát hoz, szerintem stabil bronzérem esélyes legalább. Mindenki megtudja saját pontszámát, de nem kerül nyilvánosságra az eredmény lista. Az eredményeket figyelembe veszik válogatáskor.

[202] Maga Péter2012-08-03 20:18:36

Gyengébbek kedvéért (mint amilyen én is vagyok) elmondod, mi az az 'ún. IPS', ami a téli táborban van pár?

Előzmény: [201] m2mm, 2012-08-03 19:29:26
[201] m2mm2012-08-03 19:29:26

Átfutottam a korábbi hozzászólásokat és egy dologról senki sem írt - bár lehet csak én nem vettem észre. IMO-n a feladatok algebra, geometria, számelmélet, kombinatorika témakörből kerülnek ki átlagosan nagyjából egyenlő mennyiségben, így - gondolom én - ezen témaköröket egyformán kéne megjeleníteni versenyeken. De ez koránt sincs így. Ahogyan én látom, sokan megmaradnak annál, hogy a magyarok a "kombinatoristák", abban tudunk nagyot villantani, főleg kombgeoban és a versenyeken ezen témákra tűznek ki feladatokat sokkal inkább, mint mondjuk számelméletben.

Egy feladatot, mivel akár több módon meglehet közelíteni nem feltétlen tudjuk egy témába bedobni, de nézzük meg a komolyabb versenyeken milyen feladatok voltak.

MEMO: ahogy mindig, algebra, kombinatorika, geometria, számelmélet. Ezek nehézsége mondjuk mélyen az IMO alatt volt, 2-en 4-példáztak a 6-ból, 3-an pedig elolvasási hiba miatt nem tudtak megoldani 1-et,1-et, így lett 3 feladatuk-epszilon=ezüst. Így a MEMO-t vegyük ki a további utalásokból.

Kürschák: algebra,kombinatorika,kombgeo/analízis(?).

Téli táborban van pár ún. IPS, de ezek általában nem kif. nehezek, a Tata testen lehetnek nehéz példák. Ezek algebra, "vektoros" geo, kombinatorika voltak.

Válogatók:

1. algebra, kombinatorika, számolásos geometria

2. kombinatorikus számelmélet, geometria, függvényegyenlet(algebra)

Év közben volt még a Romanian Master of Mathematics, ahol 6-an vettek részt.

1.nap: kombinatorika, geometria, algebra

2.nap: számelmélet, kombinatorika, geometria.

Na nézzük. Két számelmélet volt, egyik a második válogató első példája, ujjgyakorlat volt kb. mindenkinek, nem irányadó. Tehát azt, hogy ki milyen számelméletből egyes egyedül RMMC egyik példája mérte, ahol 6-an voltak a kb. 10 IMO-esélyesből(és az akadályt nem nagyon vették). Volt még persze KöMaL-ban pár példa(A. 562. ,B. 4421.,A. 550.,B. 4401.) a témából(a két A-példára 1 illetve 2 megoldó jutott, B-kre se sokak...), így a számelmélet szinte teljesen kimaradt a szelekcióból(pláne hogy a 6-ból 3 olimpikon csinált A-t, és egyik B-t se mint már elmondott).

Tehát a számelméletről kijelenthetjük: nem mérték le, ki milyen jó belőle. Idén szerencsére (?) csak 1 volt a 6-ból sz.e. IMO-n.

Algebra. RMMC-n senki nem oldotta meg, a többit a többség, 1. példák voltak. Tehát remekül le lett mérve ki tud egyszerű algebrát kihozni. De nehezet? A-ban volt pár, bár ott se a nehezek általában. Volt még a második válogató 3-as példája. Arról pontosan nem tudom hányan oldották meg, ha mindenki igazat mondott és nem hagytam ki senkit, akkor 3-an.

Algebrán belül külön fontos az egyenlőtlenség és a függvényegyenlet. Előbbire volt egy A-példa, de versenyeken semmi több, nem lett lemérve, holott szinte biztos volt egy idei IMO-ineq. Függvényegyenlet? Egy éve volt az olimpiai felkészítésen egy -amúgy baromi hasznos gyorstalpaló, de azóta klasszikus fvegyenleteket sehol sem mértek magyar részről.

Így az IMO 2 példája is olyan volt, amire nem válogattak. Néztek több helyen algebrát, de a két IMO-klasszikus részét nem.

Geometria. RMMC-n volt kettő is, senki nem oldotta meg magyar részről, egyiket talán mert senki nem hallott egy máshol -mint kiderült- elég közismert trükkről, másikat meg összvissz 4-en. A tatai példa rémegyszerű volt, szinte mindenki kész lett vele fél óra alatt. Maradt a két válogató geoja... Egyik számolásos volt, másik pedig nehezebb (szerintem) a mostani IMO/5-nél, nem is oldotta meg senki. Így ebben a témában vagy rémegyszerű, vagy a válogatáshoz túl nehéz példák szerepeltek, itt sem jött létre igazi válogató. KöMaL B 5-pontosok se voltak "igazi" számolásmentes geometriák, bár az utolsó hónap 5 pontosa kihozható volt trükkös körök hatványvonalai segítségével. A-ban voltak dögivel a klassz példák, amik közül nem egy megfelelő példa lett volna szerintem válogatóra, de megoldóik száma... magyar IMO-tag megoldóik száma 3 esetben is 0. IMO-n volt két geo, egyik trivi, meg is lett mindenkinek, másik meg senkinek.

Maradt a híres-neves kombinatorika. Minden versenyen volt, hol könnyebb, hol nehezebb, hol mindenki megoldotta, hol senki sem. Végülis ezt elég jól lemérték, kik mire képesek :) . Bár szívünk csücske a kombgeo Kürschák/3 kivételével megjelent csak a B. 4380., B. 4451. feladatokban - az IMO-megoldók száma itt se sok, de az összesé sem.

Tehát akkor mi lett lemérve? Válasz: kombinatorika-skill. Szinte semmi más, annyi még talán hogy ki a stabilan versenyző. IMO-n 1 kombinatorika volt, nehézsége miatt nem is oldotta meg magyar.

Gondolom érezhető, hogy ebben személyes vonatkozás is van, ezt nem tagadom, számelmélet meg geometria az amiben erősebb vagyok. Lehet ez csak idén jött össze így, de a lényeg: a továbbiakban nem kéne a kombinatoristákra gyúrni- főleg ha nincsenek igaziak, mint mondjuk egy tavalyi és azelőtti olimpikon (Dankovics Attila).

[200] janomo2012-08-03 16:38:17

Amit még hozzá szeretnék tenni hogy az ilyen problémák álatlában egy egy gyenégbb szereplés után merülnek fel aminek most kb semmi köze nem volt a porblémához a mostani mezőny egszerüen gyenge és nincs mit tenni, egy tökéletes válogatás esetén és jo felészitéssel sem hinném hogy sokkal jobb, eredményesebb lehetet volna a magyar csapat.

Ettől függetlenül a probléma már régóta fenn áll ami minden évben minusz helyeket hoz a mostanában egyébként sem tul erősen szereplő magyar cspatnak.

Előzmény: [199] janomo, 2012-08-03 16:33:54
[199] janomo2012-08-03 16:33:54

a kóüshák után van küshák helyett

Előzmény: [198] janomo, 2012-08-03 16:33:07
[198] janomo2012-08-03 16:33:07

egébként csak hogy egy példát hozzak fela mostani választok metalitására:

van egy hagyományos felkésitő tábor minden évben az ugy nevezett angol magyar téli tábor, ez kb a versenyszezon kezdete (a kürshák, ami egyébkénthagyománosan minden évben egy kapaszkodó a csapatvezetőknek arra hogy a nem megérdemelten kiválasztottakat megindokolják esetleg, bár legtöbb esetben err enem veszik a fáradságot a csak az könnyebb)

és erre a versenyre az az évi egyik olimiára kijutásra esélyest azér nem akarta elhivni mer angolból csak 3as volt a fazekasban és ebből lehetnének gondjai. ha e mögé sorolodik az hogy egy versen fair legyen az már gáz.

és...

Előzmény: [196] janomo, 2012-08-03 16:15:18
[197] Ágoston2012-08-03 16:24:03

Csak összehasonlításképp: az IOI csapat válogatása a következőképp történik: van kb 8-9 válogatóverseny, és aki ezeken (és csak ezeken) a legjobban teljesít, az megy. Minden verseny eredménye nyilvános, fent van az ELTE honlapján.

[196] janomo2012-08-03 16:15:18

A nem objektiv rendszer hiányosságai mellett lehete érveket hozni a másik oldalra.

Ha nyilvánosak a pontok akkor is tud irreális eredmény születni a válogatón, vagy bármilyen versenyen amit a hozzáértő emberek jozanésszel el tudnak mindannyian dönteni hogy nem reális és mégis inkább at viszik b helyett mer hogy nyilvánvalóan sokkal okosabb.

de ha nyilvánosak a pontotk akkor a hozzánemértő emberek idiótizmusa és kekeckedése ezt nem engedné meg, nagyon idegesitő és felesleges viták kezdődnének meg.

ettől függetlenül én személyes tapasztalatom az hogy a mostani csapatválasztóknak nem is célja reális csapatot kiválasztani.

több alklamat tudnék felidézni amikor irreális és ostoba döntéseket hoztak a mostani évet is egyébként figyelembe véve de korábbra visszamenve is amire emlékszem folyamatosan És ennél télleg jobb lenne még az elég suta objektiv rendszer is.

Előzmény: [193] Lóczi Lajos, 2012-08-02 22:04:59

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]