Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]  

Szeretnél hozzászólni? Jelentkezz be.
[1296] Fernando2010-08-03 10:28:00

100 százalékos véletlen nincs, ez szleng. Van véletlen és nem véletlen jelenség.

"Véletlen jelenség: kimenetelét az általunk figyelembe vett tényezők összessége nem határozza meg egyértelműen. TEHÁT EGY JELENSÉG VÉLETLEN VOLTA NAGY MÉRTÉKBEN FÜGG ATTÓL, HOGY MENNYI INFORMÁCIÓ ÁLL RENDELKEZÉSÜNKRE."

(Viharos László: A sztochasztika alapjai, jegyzet)

[1297] Erben Péter2010-08-03 09:20:07

A "megjósolhatóság" nehéz kérdés. Ismét Lovász László egy írását ajánlom (a 7. fejezetet konkrétan), de ne számíts könnyen programozható receptre, ami bizonyíthatóan "100%-os".

http://www.cs.elte.hu/~kiraly/alg.pdf

Érdemes még az "egyirányú" avagy "csapóajtó" függvényekre keresni, ha további konkrétumok érdekelnek.

Előzmény: [1293] Hosszejni Darjus, 2010-08-02 12:22:56
[1294] bily712010-08-02 12:36:05

Egy sorozat akkor véletlen, ha nem irható le rövidebben, mint a saját hossza.

Előzmény: [1292] Fernando, 2010-08-02 11:24:26
[1293] Hosszejni Darjus2010-08-02 12:22:56

annyira nem vagyok benne a témában, hogy én ilyet pontosan definiálni tudjak. mondjuk legyen az alul linkelt cikkben a "megjósolhatatlan".

Előzmény: [1292] Fernando, 2010-08-02 11:24:26
[1292] Fernando2010-08-02 11:24:26

Mit értesz "100 százalékig véletlen" alatt??

Előzmény: [1291] Hosszejni Darjus, 2010-08-01 15:25:37
[1291] Hosszejni Darjus2010-08-01 15:25:37

én nem akarok pénzérméket dobálni, pont ezt fejtettem ki, h szerintem nem biztos, hogy az 100%-ig véletlen. szerintem az ilyen véletlen dolgokból az emberi tényezőt jobb kihagyni

Előzmény: [1290] Róbert Gida, 2010-07-31 13:23:22
[1290] Róbert Gida2010-07-31 13:23:22

Naponta kevesebb, mint 4000 véletlen bit elég a puttónál így akár még pénzérméket dobálva is megkaphatod ezeket. De azt azért megnézném hogyan dobsz fel naponta több száz milliószor egy pénzérmét egy nagyobb pókerteremnél.

Előzmény: [1289] Hosszejni Darjus, 2010-07-31 12:49:56
[1289] Hosszejni Darjus2010-07-31 12:49:56

ki tudja... lehet h ha egy ember végzi a dobásokat, akkor nagy dobásszámnál már fel lehet írni egy elfogadhatóan nagy valószínűséggel jósoló függvényt szimplán azért, mert az az ember mindig ugyanolyan mozdulatsort végez a dobásoknál.

a hardveres véletlenszám generátor sztem is egy számítógép lehet, de erre tényleg nincs utalás

Előzmény: [1288] Fernando, 2010-07-30 06:58:57
[1288] Fernando2010-07-30 06:58:57

Miből gondolod, hogy a "hardveres véletlenszám generátor" az számítógép és valami algoritmus alapján dolgozik? Könnyen lehet, hogy valami mechanikus gép sorsol (1-től 20-ig term. számokat), erre látni példákat. A "káoszgép". :) És akkor aztán keresheted az algoritmust...

Volt olyan matematikus (sajnos már nem él), aki dobókockával, vagy érmével dolgozott, mondván, hogy ez a legjobb véletlen generálás.

[1287] Róbert Gida2010-07-30 01:19:58

Puttó játék számait véletlen generátorral állítják elő, 5 percenként van "húzás":

http://www.szerencsejatek.hu/popups/putto-rsz-2009-12-07.pdf

Anno még próbáltam is feltörni, persze nem sikerült, ezek már jóval kifinomultabb generátorok.

Előzmény: [1286] Hosszejni Darjus, 2010-07-27 18:09:01
[1286] Hosszejni Darjus2010-07-27 18:09:01

a számológépem valószínűleg nem használ valami bonyolult algoritmust a random függvényre (bár ezt nem tudom). ezek szerint írható olyan program ami polinom időben kiszámítja a számológépem algoritmusát? meg tudnám jósolni, hogy mit ad a számológép a következő "véletlen számnak".

amúgy kicsit csalódtam, azt hittem, hogy létezik valódi véletlenszám generátor, csak nem tudtam elképzelni, hogy hogyan...

Előzmény: [1284] Erben Péter, 2010-07-27 15:31:32
[1285] Hosszejni Darjus2010-07-27 18:03:58

igen :) tetszik a cikk!

Előzmény: [1284] Erben Péter, 2010-07-27 15:31:32
[1284] Erben Péter2010-07-27 15:31:32

Kiindulásnak jó:

http://www.sulinet.hu/termeszetvilaga/archiv/2000/0014/02.html

Előzmény: [1283] Hosszejni Darjus, 2010-07-27 14:42:34
[1283] Hosszejni Darjus2010-07-27 14:42:34

nincs különösebben nagy infós vénám, de van egy kérdésem, amin mostanság töröm a fejem és magamtól nem tudok rájönni: Hogyan működik a "random" függvény? ergo a véletlen számgenerátor függvény. mert ugyebár ez nem egy konkrét parancs (szerintem), márpedig a gép saját magától nem talál ki számokat

köszi

[1282] Fernando2010-07-23 09:15:25

Nem hiszem, hogy új kiadásban lehet kapni. Nagyobb könyvtárakban előfordulhat. Elektronikus antikváriumokban elő lehet jegyeztetni, de ne számíts gyors eredményre.

Előzmény: [1279] Lagrange, 2010-07-15 15:57:53
[1281] SmallPotato2010-07-15 16:57:16

Jogos a kiegészítés; köszönöm.

Előzmény: [1277] R.R King, 2010-07-15 13:56:12
[1280] Sirpi2010-07-15 16:49:41

Hivatkozhattam volna rá, de akkor se lett volna sokkal rövidebb ennél a nem egész 1 sornál, ráadásul aki ilyen feladatot feldob, hogy nem tudja megoldani, annál nem biztos, hogy ilyen szavakkal kellene dobálózni.

Előzmény: [1278] Róbert Gida, 2010-07-15 15:03:43
[1279] Lagrange2010-07-15 15:57:53

Köszi a válaszokat! És az általad említett Prékopa-Valószínűségelmélet könyvet hol lehet beszerezni?:)

[1278] Róbert Gida2010-07-15 15:03:43

Nem azért, de, ha 2 szám összegét és szorzatát megadják, akkor Viéte formula miatt egyből fel lehet írni egy másodfokú egyenletet, amelynek gyökei.

Előzmény: [1274] Sirpi, 2010-07-15 11:25:43
[1277] R.R King2010-07-15 13:56:12

A számtani-mértani közép közötti egyenlőtlenség csak nemnegatív számokra vonatkozik. Pl. a=-1 b=-1 esetén a mértani közép 1 a számtani meg -1 lenne. Az indoklás szerintem csak abban az esetben helyes, ha feltesszük, hogy a és b nemnegatív. Az összeg pozitív volta miatt ez itt persze teljesül..

Előzmény: [1275] SmallPotato, 2010-07-15 12:16:31
[1276] Eszti12010-07-15 13:45:33

Köszönöm a segitseget. ( valamiert nem tudom a billentyuzetet atallitani) Eddig en is eljutottam, csak az a kerdes hogy ha ez egy tesztfeladat volt egyetemre bejutashozakkor vajon elvartak volna, hogy ezzel az i-vel szamoljak. Persze nincs semmi gyakorlati tudasom efelöl, csak tudni szeretnem hogy lesz-e eselyem.

[1275] SmallPotato2010-07-15 12:16:31

Egy másik megközelítés: a a és b mértani közepe \sqrt{10}\approx 3,16, a számtani közepük \frac{5}{2}=2,5, márpedig két valós szám mértani közepe soha nem lehet nagyobb a számtani közepüknél, tehát a és b nem lehet valós.

Előzmény: [1273] Eszti1, 2010-07-15 10:24:43
[1274] Sirpi2010-07-15 11:25:43

A másodikból b=5-a, ezt az elsőbe beírva: a(5-a)=10, rendezve: a2-5a+10=0, ennek pedig nincs megoldása (D=52-4.10=-15<0)

Előzmény: [1273] Eszti1, 2010-07-15 10:24:43
[1273] Eszti12010-07-15 10:24:43

Sziasztok

Tudna valaki segíteni a következő feladatban: a*b=10 a+b=5 Nálam kimerít minden tudásomat, és nemjutok a végére. Előre is köszi

[1272] Fernando2010-07-15 07:55:47

Nem baj! Amiket írtam azok híres gyakorlatiasabb jellegű problémák. A neten is van róluk, de a Prékopa könyv is tárgyalja többségüket.

A netes jegyzetet és/vagy a Prékopa könyvet minden további nélkül elkezdheted, boldogulni fogsz velük!

Előzmény: [1271] Lagrange, 2010-07-14 22:00:22

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]