Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]  

Szeretnél hozzászólni? Jelentkezz be.
[146] fermel2007-02-17 15:06:02

Mekkora az a legkisebb n, melyre biztosan igaz a következő? n db síkbeli rácspont esetén biztosan találunk köztük három olyat, amelyek által alkotott háromszög súlypontja is rácspont.

Köszönöm a segítséget. fermel

[145] tim202007-02-16 13:01:02

A könyvet sajnos nem tudom most beszerezni, de én azt mondom, hogy a második a nagyobb. Megerősítenél ha Te még a könyv oldalszámát is tudod? Előre is köszi.

Előzmény: [144] jonas, 2007-02-16 12:09:19
[144] jonas2007-02-16 12:09:19

Ezt mintha Smullyan valamelyik fejtörős könyvében láttam volna. Aha, meg is van: a Seherezádé relytélyében a 9. feladat. Vedd ki valahonnan a könyvet, benne vannak a megoldások is.

Ha meg csak az eredményt akarod tudni, akkor kérdezd meg a google kalkulátort: fél tucat tucat tucat tucat vagy hat tucat tucat tucat tucat a nagyobb?

Előzmény: [143] tim20, 2007-02-16 11:39:14
[143] tim202007-02-16 11:39:14

Melyik a több? Fél tucat tucat tucat tucat, vagy hat tucat tucat tucat tucat? A második vagy az első vagy egyenlőek?

[142] Lóczi Lajos2007-02-15 11:44:52

Itthon a fuggvenyt inkabb Riemann-fuggvenynek hivjuk, a Dirichlet-fuggveny a racionalis szamok karakterisztikus fuggvenye (vagy annak "komplementere") szokott lenni.

Előzmény: [141] jonas, 2007-02-14 23:12:49
[141] jonas2007-02-14 23:12:49

Dirichlet függvénynek is hívják.

Előzmény: [140] nyida, 2007-02-14 22:13:33
[140] nyida2007-02-14 22:13:33

Helló! Kellene nekem kép, link, akármi arról a függvényről, amit Riemann talált ki, és az a szabály, hogy ha x irracionális, akkor a függvény 0, ha x racionális, akkor a függvény értékét a racionális szám közönséges törtalakjából a számláló 1-re cserélésével kapjuk. A függvényt 0 és 1 közt értelmezzük. Ez az első olyan függvény, ami minden racionális ponton szakad, minden irrac ponton folytonos. Kösz

[139] Noémi2007-02-12 00:19:52

Sziasztok! Éppen egy felejthetetlen kiselőadásra készülök, és véletlenül bukkantam erre az oldra. Így viszont kapva kapok eme páros , és soha vissza nem térő lehetőségen és a segítségeteket kérném. Én inkább (kb. 100%) humán beálítottságú vagyok, viszont, most a fősulin kéne tartanom egy előadást, melynek címe; elektromosság, mágnesesség. A tanárnő azt kérte, hogy mindenképpen CSAK érdekességeket említsek a témával kapcsolatban,(viszont az bármi lehet ami egy kicsit is kontektussal van e témával) és kerüljem az unalmas elméleti részt, melynek nagyon örültem, egészen addig amíg újfent rá nem jöttem, hogy értelmes ötleteknek még a halvány szikrája sem sziporkázik elmémben. Úgy gondoltam, miközben a fórum oldalain mozgattam szemgolyómat, hogy nektek biztos lennének jó ötleteitek eme fergeteges problémámra (remélem ennél nagyon soha nem lesz :) Én persze ha megadtok témát, annak utána nézek, s pótolom eme témával kapcsolatos hiányosságomat. Előre is köszönöm mindannyiotoknak; Noémi :)

[137] thukaert2007-01-30 19:54:26

A többváltozós diofantoszi egyenleteknél szükség van arra hogy megoldást rendezett n-es formájában adjuk meg, hiszen az hogy egy diofantoszi egyenletnek (2,1) megoldása az nem azt jelenti hogy az (1,2) is az.A sorrend itt a változók sorrendjét követi pl.: (x,y)=(2,1) ez pontosan azt jelenti hogy x=2 és y=1

vagy

(x,y,z)=(3,4,5) x=3 y=4 z=5

így (1,2) nem egyenlő (2,1)-el a rendezés tehát fontos,mert nem biztos hogy az egyenlet szimmetrikus a változóiban.

Előzmény: [136] epsilon, 2007-01-30 13:08:45
[136] epsilon2007-01-30 13:08:45

Helló! Banális a kérdés, de, nem látom az értelmét, hogy egy adott diofantikus egyenlet egész megoldásainak keresésénél, miért teszik oda, hogy az (x,y) rendezett egész megoldásait kerseik? Mit kellene pluszban érteni a rendezés alatt, mint amit megszoktunk, hogy (x,y) nem ugyanaz mint (y,x), másvalamit? Vagy ezzel ki akarják zárni az (x,x) számpárokat?

[135] waszlavikm2007-01-19 19:47:21

Köszönöm szépen!!

Waszlavik Miklós

Előzmény: [134] ScarMan, 2007-01-18 20:21:09
[134] ScarMan2007-01-18 20:21:09

A feladat már szerepelt a fórumon itt.

Előzmény: [133] waszlavikm, 2007-01-18 20:00:37
[133] waszlavikm2007-01-18 20:00:37

Tisztelettel üdvözlök mindenkit!

51 éves vagyok, sajnos régen jártam iskolába. Kérem, ha valaki tud segítsen! Adott egy kör alakú kert. A kör kerületén, azaz a kert szélén, leverünk egy karót, melyhez kötéllel kikötünk egy éhes kecskét. Milyen hosszú legyen a madzag, hogy a kecske, a kert területének a felét legyen képes lelegelni?

Köszönettel: Waszlavik Miklós

[132] ^mtk2007-01-18 19:26:54

Koszonom!

Az alabbi kepletbol kellene szamitani L-t es C-t. Legyszi segitsetek..aztan egyelore ennyi volt:)

Koszonom!

Előzmény: [131] i, 2007-01-17 20:36:47
[131] i2007-01-17 20:36:47

x^{-a}=\frac{1}{x^a}

Előzmény: [130] ^mtk, 2007-01-17 18:49:17
[130] ^mtk2007-01-17 18:49:17

A negativ hatvanyt ha meg elmondanad... Koszi!

Előzmény: [129] Sirpi, 2007-01-17 18:17:58
[129] Sirpi2007-01-17 18:17:58

100.220=22000=2,2.104

Így a teljes szorzat a gyökjel alatt: 2,2.104.10-6.10-12=2,2.10-14

Előzmény: [128] ^mtk, 2007-01-17 17:34:51
[128] ^mtk2007-01-17 17:34:51

Meg lenne egy kerdesem.

Az alabbi szamitasban nem ertem hogy egyszerusitett.Nem irnad le?

Koszi!

Előzmény: [127] i, 2007-01-14 14:08:30
[127] i2007-01-14 14:08:30

Szívesen :)

[126] ^mtk2007-01-14 13:40:36

KOSZI!

Előzmény: [125] i, 2007-01-14 12:58:20
[125] i2007-01-14 12:58:20

Az mindegy, csak a végén L=\frac{25333}{500000^2*10*10^{-6}} lesz.

Én az ilyesmit matekórán tanultam valamikor régen, egyenletrendezés címszóval lehetne esetleg rákeresni...

[124] ^mtk2007-01-14 12:10:50

Eredetileg a nevezoben kellene legyen a : 10*10 a -6.-on. Igy mar maskeppen fog festeni?

Amugy tudnal ajanlani valami anaygot hogy hol tudom ezeket megnezegetni/megtanulni?

Koszonom!

Előzmény: [122] i, 2007-01-13 23:10:38
[123] ^mtk2007-01-14 11:58:09

Koszi!:-)

Előzmény: [122] i, 2007-01-13 23:10:38
[122] i2007-01-13 23:10:38

500000=\sqrt{\frac{25333}{L}*10*10^{-6}}

Ezt négyzetre emeled: 500000^2=\frac{25333}{L}*10*10^{-6}

Beszorzol L-lel, és leosztasz 5000002-nel:

L=\frac{25333}{500000^2}*10*10^{-6}

És már csak ki kell számolni :)

[121] ^mtk2007-01-13 22:47:18

Sziasztok!

En uj vagyok itt .. Nemi segitsegre lenne szuksegem,mivel nem ertem a matematikat,de igyekszem.

A kerdesem a kovetkezo lenne:

f = gyokalatt(n/L*C)

namost egy konkret esetre kellene megoldas.

500000 = gyokalatt(25333/L*10*10 a minusz 6.-on)

Itt L erteket kellene kiszamolni.

Legyszi irjatok le nekem hogy hogy kell,sorrol sorra,ok? Nem muszaly a megoldas csak az elv...( C-re is ugyanaz?)

Koszonom.

Előzmény: [1] Brigi, 2005-08-26 19:45:29

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]