|
|
[1599] Valvehead | 2011-12-30 07:42:01 |
Egy jó félórát kínlódtam vele, hogy hogyan tudnám felhasználni a harmadik hatványra vonatkozó azonosságot harmadik gyökre, de nekem nem megy. Kaphatnék egy kis instrukciót?
|
Előzmény: [1597] sakkmath, 2011-12-29 22:52:02 |
|
|
|
|
|
|
[1593] Valvehead | 2011-12-29 19:02:08 |
Ehhez a feladathoz kérnék szépen segítséget: http://imageshack.us/photo/my-images/832/1gyak2d.png/ Előre is köszönöm!
|
|
|
|
[1590] Antal János Benjamin | 2011-12-29 14:31:08 |
Elnézést, eléggé pontatlan vagyok. A feladat, hogy egy téglalap oldalai egész számok és területe és kerülete megegyezik, a két megoldás megvan, neten is kerestem rá megoldást, ott is csak a két megoldást láttam, konkrét levezetést sehol nem találtam. Tehát a és b is egész számok.
|
|
[1589] takács krisztina | 2011-12-29 11:28:34 |
Ha valai tud küldeni korábbi 9.-es Gordiusz feladatsorokat, annak nagyon örülnék, a takiri@freemail.hu címre kérem.
|
|
|
|
[1586] Antal János Benjamin | 2011-12-29 02:16:29 |
Sziasztok! Az alábbi egyenlőséget kéne megoldani (elvileg középiskolai emelt szintű matek tudással meg lehet ):
ab=2a+2b
Előre is köszönöm
|
|
|
|
[1583] Lapis Máté Sámuel | 2011-12-10 15:51:11 |
Sziasztok! Tudna valaki segíteni ebben a feladatban? A megoldás menetre is szükségem lenne!Mivel egyenlő ?
|
|
|
[1581] lorantfy | 2011-11-27 16:29:05 |
Két pontból még nem tudod felírni a második parabola egyenletét. Kell még valamilyen információ. Jó lett volna, ha beírod az eredeti feladatot! Én arra gondolok, hogy a másik parabola szimmetria tengelye is az y tengely. Ha ez benne van az eredeti szövegben akkor BINGO! (Tudod honnan származik a BINGO szó?) Akkor csak egyetlen paramétert kell meghatározni, a-t. Mindkettőt toljad feljebb 10-el aztán integráljad őket -1-től +1 és a két integrál különbsége a közbezárt terület.
|
Előzmény: [1580] laci777, 2011-11-27 15:56:42 |
|
[1580] laci777 | 2011-11-27 15:56:42 |
sziasztok!
tudna valaki segíteni az alábbi feladatban? meg kell(ene) határozni az y=3xnégyzet parabola, valamint az ezt az (1;3) pontban, az y tengelyt pedig a (0;-10) pontbam metsző másik parabola által bezárt terület nagyságát.
sajnos még a második parabolánál is annyit "sikerült" kiszámolnom, hogy (a+b)=13 (ahol az axnégyzet+bx-10 a második parabola egyenlete) onnan talán már menne(?)
előre is köszönöm szépen üdv laci
|
|
|
[1578] Fálesz Mihály | 2011-11-22 06:55:05 |
A különböző értelmben vett határértékeket nem lehet csak úgy össze-vissza cserélgetni (pedig időnként nagyon praktikus lenne). Itt legalább háromféle határérték keveredik össze, a végtelen szorzat, az egyes prímek kitevőinek összege, a különböző prímhatványok szintén végtelen szorzata... Tulajdonképpen végtelen sok divergens sorozat szorzatára próbálsz következtetni.
Ha a végtelen szorzat értéke egy pozitív racionális szám, akkor sem igaz, hogy egy prím kitevője a szorzatban (a részletszorzatok határértékében) egyenlő a tényezőkben szereplő kitevők összegével (a kitevők részletösszegei határértékével). Még akkor sem, ha a kitevők összege létezik.
Pl. lehet az összes ai tényező alakú, ahol ui,vi alkalmas pozitív egészek; ilyenek végtelen sorzataként minden nemnegatív szám előáll. (A alakú számok a pozitív valós számok között sűrűn vannak.)
De olyan végtelen szorzatot sem nehéz konstruálni, ahol az összes prím összesen kétszer szerepel, egyszer a számlálóban, egyszer a nevezőben, összességében minden prím ,,kiesik'', a szorzat értéke mégsem 1, hanem mondjuk 2.
|
Előzmény: [1576] bily71, 2011-11-21 22:28:11 |
|
|