|
[2001] Nagypapa | 2015-02-21 17:21:29 |
Tükrözd pl. A-t e-re és a tükörképet kösd össze B-vel. A kapott M metszéspont létezik (miért), és MA+MB minimális, továbbá MA=MB is teljesül.
A bizonyítást Rád bízom.
|
Előzmény: [1999] epsilon, 2015-02-21 16:27:04 |
|
|
[1999] epsilon | 2015-02-21 16:27:04 |
Üdv Mindenkinek! Lenne egy egyszerű geometria feladatom, amire egy egyszerű megoldást keresek:"Legyen A, B két rögzített pont a síkban, és egy e egyenes ami párhuzamos az AB egyenessel.(az e és AB közötti távolság rögzített). Legyen M az e egyenes egy változó pontja. Igazoljuk, hogy az MA+MB összeg akkor minimális, ha MA=MB."Olyan megoldás kellene, ami nem használ matematikai analízist, sem az izoperimetrikus tételek valamelyikét. Tudnátok-e segíteni? Előre is kösz, üdv: epsilon
|
|
|
[1997] Bátki Zsolt | 2015-02-20 05:39:55 |
Korrekt. Az érdekesség, hogy bejön itt is az 'e' Az előzőhöz: Tippeltük: 3,6,43,55,61 Kihúzták 62,66,78,81,85 Mi az esélye, hogy a tippelt legnagyobbja, kisebb mint a kihúzott legkisebbje?
|
|
[1996] Róbert Gida | 2015-02-16 21:53:24 |
Legyen &tex;\displaystyle n=\binom{90}{5}&xet;, ekkor a valószínűség &tex;\displaystyle 1-(1-\frac{1}{n})^n&xet;, nagyjából &tex;\displaystyle 1-e^{-1}&xet;. (1988-as kérdésed pedig iszonyú pongyolán van feltéve).
|
Előzmény: [1995] Bátki Zsolt, 2015-02-15 23:16:02 |
|
[1995] Bátki Zsolt | 2015-02-15 23:16:02 |
A lottós feladat nem volt népszerű. Itt egy másik:
Mint tudjuk n=(90 alatt az 5) számú különböző tipp van. n= kb 43 millió.
Ha n darab szelvényt véletlenszerűen töltünk ki, akkor Mennyi a valószínűsége, hogy lesz benne 5-ös?
Az ötösök számának várható értéke, gondolom 1.
|
|
|
[1993] Zilberbach | 2015-01-25 12:57:36 |
Claude Elwood Shannon, az információelmélet megalkotója a következő egyenlettel írta le az információtartalmat: H = k·log¡a(1/p) ahol k a jelkészletből felhasznált jelek száma, p a jelkészletből 1 jel kiválasztásának valószínűsége, H az információtartalom. De honnan kapjuk meg a fönti képletben az "a"-t a logaritmus alapszámát?
|
|
|
[1989] marcius8 | 2015-01-20 11:21:47 |
Nősülni szándékozok. (Ez eddig még magánügy.) Ezért egy társkereső rovatban hirdetést adok fel. A beérkezett válaszok alapján választom ki a számomra legszimpatikusabb jelöltet. Tegyük fel, hogy mindegyik jelöltnek jól meghatározott szimpátia-fokozata van, amelyeket előre nem ismerhetek. A hirdetésre a válaszok véletlenszerű sorrenben érkeznek, és minden válaszra reagálnom kell a "megfelelő"/"nem megfelelő" jelzéssel. Csak egy jelöltnek mondhatok megfelelőt, utána mindenkit el kell utasítsak. Akinek már egyszer azt mondtam, hogy "nem megfelelő", azt már vissza nem hívhatom. Összesen 200 válasz érkezik. Hanyadik jelöltnek mondjam a "megfelelő"-t, hogy a legnagyobb valószínűséggel válasszam ki a számomra legszimpatikusabb jelöltet?
|
|
[1988] Bátki Zsolt | 2015-01-19 22:28:30 |
Életből vett példa. Barátokkal lottózunk. (90/5-ös)
Most úgy jött ki, hogy az összes számunk alatta van a kihúzottaknak.
Mi ennek a valószínűsége? (illetve reciproka: átlagosan mennyi tippelés után van ilyen eset)
Akit érdekel a téma tippeljen,majd számoljon!
|
|
|
[1986] emm | 2015-01-14 11:35:15 |
Ahhoz meg, hogy pont az &tex;\displaystyle m&xet;-ik momentum létezzen, de az &tex;\displaystyle m+1&xet;-ik ne, elég ha a súlyok kb. &tex;\displaystyle x^{-m-2}&xet; rendben csengenek le.
|
Előzmény: [1984] marcius8, 2015-01-14 10:22:34 |
|
[1985] emm | 2015-01-14 11:32:58 |
Igen.
Vázlatosan: Rakjuk sorba a &tex;\displaystyle (0,1]&xet; intervallum racionális számait, és kapjon a &tex;\displaystyle k&xet;-ik szám a sorozaban &tex;\displaystyle 2^{-k-1}&xet; mértéket. Ezzel &tex;\displaystyle 1/2&xet; mértéket osztottunk ki ezen az intervallumon. Soroljuk fel &tex;\displaystyle (n-1,n],(-n,1-n]&xet; sorrendben az intervallumokat, kapjon a sorozatban a &tex;\displaystyle k&xet;-ik tagként szereplő intervallum &tex;\displaystyle 2^{-k}&xet; mértéket, a benne lévő rac számokat felsoroljuk, az &tex;\displaystyle n&xet;-ik kapjon &tex;\displaystyle 2^{-k-n}&xet; mértéket.
Abszolút momentumok becsléséhez elég, ha azt mondjuk, hogy az intervallum nagyobb abszolútértékű végpontjára koncentrált mértékű valváltozó momentumát számoljuk ki, és az &tex;\displaystyle \frac{(an)^k}{2^{-cn}}&xet; típusú sorozatok meg abszolút konvergensek, ha &tex;\displaystyle c>0&xet;.
|
Előzmény: [1984] marcius8, 2015-01-14 10:22:34 |
|
[1984] marcius8 | 2015-01-14 10:22:34 |
Van-e olyan diszkrét valószínűségi változó, amely minden racionális számot, és csak racionális számot felvesz nem nulla valószínűséggel, és várható értéke véges? És van-e olyan diszkrét valószínűségi változó, amely minden racionális számot, és csak racionális számot felvesz nem nulla valószínűséggel, és szórása véges? És van-e olyan diszkrét valószínűségi változó, amely minden racionális számot, és csak racionális számot felvesz nem nulla valószínűséggel, és "m"-ik momentuma véges? Várom mindenkinek megtisztelő válaszát: Bertalan Zoltán.
|
|
[1983] Fálesz Mihály | 2015-01-04 20:36:51 |
Egy halk megjegyzés.
"Addíciós képletnek" azokat az azonosságokat hívjuk, amik két szög/szám összegének vagy különbségének valamelyik szögfüggvényét írják fel a két szög/szám szögfüggvényeivel. Az "addíció" szó a két szög összeadására utal.
A két koszinusz összegének szorzat alakja nem "addíciós képlet".
|
Előzmény: [1974] csábos, 2015-01-03 16:56:06 |
|
[1982] Kovács 972 Márton | 2015-01-04 17:44:20 |
Jó, ebben igazad van. De ha továbbgondolod az ő megoldását, ez a lényegen nem változtat sokat. Onnantól, hogy "addíciós formula" már triviális volt, hogy mit lehetne tenni. Nekem nem ugrott be, pedig én is számtalanszor használtam már, más típusú feladatokban. Megesik az ilyen. :)
Mindenesetre köszönöm még egyszer a segítségeteket!
|
Előzmény: [1980] Róbert Gida, 2015-01-04 09:34:51 |
|
|
[1980] Róbert Gida | 2015-01-04 09:34:51 |
"Mitől pontatlan az a megoldás?"
Attól, hogy ezekben a formulákban itt 2 van, és nem 1/2. Ha 1/2 lenne, akkor triviálisan &tex;\displaystyle |cos(A)+cos(B)|\le \frac 12&xet; volna minden A,B-re, ami persze nem igaz. Gyakran van ilyen egyszerű módszer arra, hogy gyorsan eldöntsük mikor van jól felírva egy formula. Így én már az &tex;\displaystyle \frac 12&xet;-nél leálltam az olvasásban.
|
Előzmény: [1978] Kovács 972 Márton, 2015-01-03 21:39:55 |
|
[1979] Róbert Gida | 2015-01-04 09:26:17 |
Bizonyításom vázlat volt. Látod te is addíciós képletet írtál (1974.,1977. hozzászólás), én is, de valójában ez egy összeget szorzattá alakító képlet, ami egyébként pont az addíciós képletből következik. Ha a befejezés innen se megy, akkor semmilyen matek versenyre ne menjetek.
|
Előzmény: [1977] csábos, 2015-01-03 21:30:57 |
|
[1978] Kovács 972 Márton | 2015-01-03 21:39:55 |
Köszönöm ezt a megoldást is. Az igazat megvallva, nem sokkal rövidebb csábos megoldásánál, és a lényege ugyanaz. Viszont a pontatlanságot nem értem. Neki is és neked is kijött, hogy nincs megoldás. Mitől pontatlan az a megoldás?
A tiedből következik, hogy &tex;\displaystyle x=\frac{\pi}{6}&xet; vagy &tex;\displaystyle x=\frac{\pi}{4}&xet;. Ezen megoldások egyike sem jó, a kezdeti kikötések miatt.
Az övéből pedig az következik, hogy &tex;\displaystyle cos(ix)=0&xet; ahol &tex;\displaystyle i=1,2,3,4&xet; és az is ütközik az eredeti kikötéssel.
|
Előzmény: [1976] Róbert Gida, 2015-01-03 19:46:48 |
|
[1977] csábos | 2015-01-03 21:30:57 |
1. Mi az az f(x)? Nyilván nem az eredeti függvény, mert legalábbis más az értelmezési tartománya.
2. Valóban írhattam volna, hogy egy addíciós képlet háromszori alkalmazása után épp az előttem szól 1972-es képlete jön ki. Az is követhetetlen.
3. Melyik addíciós képletet használjuk?
4. Miért fejezehető be könnyen?
Előre is köszi.
|
Előzmény: [1976] Róbert Gida, 2015-01-03 19:46:48 |
|
[1976] Róbert Gida | 2015-01-03 19:46:48 |
Pontatlan és km hosszú számolás. Én így csinálnám, hozzuk közös nevezőre az első két tagot, majd az utolsó két tagot, az addíciós formulát használva, majd &tex;\displaystyle cos(3x)&xet; kiemelhető mindkét nevezőből.
&tex;\displaystyle f(x)=\frac{2}{cos(3x)}(1+\frac{cos(x)}{cos(5x)})&xet;
Innen már könnyen befejezhető (f(x)=0 kell).
40 éve még felvételibe is szégyelltek volna ilyen könnyű feladatot berakni.
|
Előzmény: [1974] csábos, 2015-01-03 16:56:06 |
|