Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]  

Szeretnél hozzászólni? Jelentkezz be.
[199] V Laci2007-04-17 17:38:00

Köszönöm szépen!

[198] SAMBUCA2007-04-17 00:19:09

Na igen, én is itt találtam: 83=6*43+2*33+4*23+42*13. :)

Előzmény: [196] V Laci, 2007-04-16 14:29:56
[197] Lóczi Lajos2007-04-17 00:06:51

http://mathworld.wolfram.com/HadwigerProblem.html

http://mathworld.wolfram.com/CubeDissection.html

Ezek megmondják, hogy az Amer. Math. Monthly melyik számában van meg a megoldás, a könyvtárban tehát utánanézhetsz szükség esetén.

Előzmény: [196] V Laci, 2007-04-16 14:29:56
[196] V Laci2007-04-16 14:29:56

Szia!

Igen, tényleg ezt szeretném bizonyítani. A többi maradékra már megvan a szerintem legkisebb konstrukció, azonban az 5-ös maradékra a legkisebb, amit elő tudtam állítani, az a 61 kockás darabolás. És szeretnék lejjebb menni. :)

Előzmény: [195] Sirpi, 2007-04-16 13:38:38
[195] Sirpi2007-04-16 13:38:38

Szia!

Fel tudtam valaha, egyszer már végigküzdöttem ezt. Gondolom azt akarod bizonyítani, hogy ha n>47, akkor egy kocka felosztható n kisebb kockára, és ebből tényleg a legnehezebb lépés az n=54 eset megoldása. Ugye ha összevonunk 8 egybevágó kockát egy kétszer akkorává, akkor a darabszám 7-tel csökken, vagyis ilyen lépések során a 7-es maradék nem változik. Éppen ezért elég minden 7-es maradékú n-re megoldani a felosztást, ugyanabban a maradékosztályban a nagyobbakra automatikusan adódik.

A nagy kockánál ez a maradék 1, viszont nekünk az 5-ös maradékot kell megcéloznunk, tehát 4-gyel kell növelni. Egy kocka 3x3x3-má vágása 2-vel csökkenti a 7-es maradékot, ugyanígy 3x3x3 összeforrasztása meg 2-vel növeli. Régen is így csináltam valahogy, de most még nem látom még pontosan, hogy hogy is volt a tényleges felosztás, de hátha ez alapján valaki más gyorsan megcsinálja :-)

Előzmény: [194] V Laci, 2007-04-16 13:08:16
[194] V Laci2007-04-16 13:08:16

Sziasztok! Fel lehet-e darabolni egy kockát 54 kiskockára? Ha igen, hogyan? Előre is köszönöm!

[193] HoA2007-04-12 15:02:16

1/7 tizedestört alakban = 0,142857142857142857142857142857... , vagyis a jegyek 6-osával ismétlődnek. 2004 osztható 6-tal ( 3-mal osztható és páros ) , tehát a 2005-ik jegy a ciklus első jegye, vagyis 1.

Előzmény: [190] hajnalkalive, 2007-04-11 18:32:35
[192] phantom_of_the_opera2007-04-11 23:22:44

Sziasztok! Gráfos feladattal kapcsolatban kérnék segítséget: Bizonyítsuk be, hogy ha egy n pontú egyszerű gráf leghosszabb útja két végpontjának fokszámösszege legalább n, akkor a leghosszabb utak között van 2, amelyek végpontjai szomszédosak. Előre is köszönöm.

[191] jonas2007-04-11 20:28:32

A téglalap átlója a hosszabbik oldallal \alpha/2 szöget zár be, ezért aztán a hosszabbik oldal hossza dcos (\alpha/2), a rövidebbik oldalé dsin (\alpha/2). Ebből a téglalap kerülete 2d(sin (\alpha/2)+cos (\alpha/2))=  2\sqrt2 d\sin(\alpha/2 + \pi/4) vagy valami hasonló. A terület d2cos (\alpha/2)sin (\alpha/2)= d2/2.sin \alpha.

Előzmény: [190] hajnalkalive, 2007-04-11 18:32:35
[190] hajnalkalive2007-04-11 18:32:35

Tud segíteni valaki?

Mennyi 2005 számjegy a tizedesvessző után 1/7 tizedestört alakban?

Egy téglalp átlói d cm hosszúak, az átlók által bezárt hegyesszög alfa fok. Fejezzük ki a téglalp területét és kerületét d-vel és alfával.

[189] pvong172007-04-11 18:06:00

Köszönöm.

[188] Lóczi Lajos2007-04-10 23:39:52

Reggelre kell? :)

Biztos leírtunk egy ilyet már itt: Pitagorasz-tétel a jobboldali tag kitevőjében (cos2(x)=1-sin2(x)), új ismeretlen (A:=4sin2(x)) és másodfokú egyenlet.

4sin2(x)+41-sin2(x)=4, azaz A+4/A=4, vagyis A1,2=2, tehát |\sin(x)|=1/\sqrt{2}, ezt meg kitalálod.

Előzmény: [187] pvong17, 2007-04-10 23:16:19
[187] pvong172007-04-10 23:16:19

Üdvözlet mindenkinek!

Jó lenne a segítene valaki ebben , már nem nagyon tudok sehová fordulni:

4sin2x + 4cos2x = 4

[186] nadorp2007-03-30 19:07:42

Sorry,de ezt alaposan elszámoltam. Helyesen a kérdéses Sn összegre elég nagy n esetén

-1-\epsilon\leq{S_n}-(2\sqrt{n}-\frac\pi2)\leq\epsilon

Előzmény: [184] nadorp, 2007-03-30 13:45:25
[185] Willy2007-03-30 16:50:25

Szeretnék egy egyszerű modellt kreálni a globális felmelegedés modellezésére, de honnét lehetne megbízható adatokat szerezni? (Pl.: CO2 mennyire fogja vissza a meleget... ezt a molekula méretéből is meg lehet-e mondani?)

[184] nadorp2007-03-30 13:45:25

Ha az összeget az \int{arc}\tan{\frac1{\sqrt{x}}}dx integrállal alulról és felülről becsüljük ( felülről 0-tól n-ig, alulról 1-től n+1-ig ), akkor az összeg a 2\sqrt{n}-ln(1+\sqrt{n}) értékétől kb. 1-re van.

Előzmény: [182] Lóczi Lajos, 2007-03-30 00:16:13
[183] ágica2007-03-30 10:02:05

Nem lenne jobb inkább 1-től integrálni? Akkor az integrál értéke 2\sqrt{n}-2, ami pontosabban közelíti a szumma értékét.

Előzmény: [182] Lóczi Lajos, 2007-03-30 00:16:13
[182] Lóczi Lajos2007-03-30 00:16:13

Mivel arctg(x)\approxx, ha |x| kicsi, ezért a szummádat jól közelíti az \int_0^n 1/\sqrt{i}di integrál, ami 2\sqrt{n}.

Előzmény: [181] Lóczi Lajos, 2007-03-30 00:06:19
[181] Lóczi Lajos2007-03-30 00:06:19

Ha n tart a végtelenbe, a szumma is. Arra gondolsz, hogy milyen sebességgel divergál?

Előzmény: [180] S.Ákos, 2007-03-29 20:47:42
[180] S.Ákos2007-03-29 20:47:42

Sziasztok!

Egyik matematikafeladat továbbgondolásánál jött elő a következő probléma: Hogyan lehetne közelíteni a \sum_{i=1}^n arctg\frac1{\sqrt i} sor összegét?

[179] csocsi2007-03-22 19:53:56

Sziasztok! Van egy ilyen kirakós játékom, amit az ábrán láthattok (9 darabból áll). A helyzet az, hogy nem tudom hogyan kell kirakni, ha valaki tudja, hogy kell vagy akár csak a nevét ismeri, kérem mondja meg! Köszönöm.

[178] Lóczi Lajos2007-03-22 16:45:18

A "többdimenziós mátrixokat" szokás tenzoroknak vagy multilineáris leképezéseknek nevezni (melyek bizonyos transzformációs szabályoknak engedelmeskednek). A multilineáris leképezés olyan, hogy több vektorhoz rendel egy számot, és mindegyik változójában lineáris. A fizikában, differenciálgeometriában, analízisben (pl. R2\toR2 függvények magasabbrendű deriváltjai multilineáris leképezések) sokszor használatosak.

Néhány keresőszó:

multilinear algebra, multilinear form, tensor, tensor product. Két példa:

http://documents.wolfram.com/v5/Built-inFunctions/ListsAndMatrices/StructureManipulation/FurtherExamples/Inner.html

http://documents.wolfram.com/v5/Built-inFunctions/NumericalComputation/MatrixOperations/FurtherExamples/Outer.html

Előzmény: [175] Willy, 2007-03-22 12:00:54
[177] jenei.attila2007-03-22 14:15:55

Tudtommal nem léteznek, ugyanis a mátrix nem egy téglalap sémába rendezett számcsoport (csak annak látszik). Lényegében a mátrix véges dimenziós vektortéren értelmezett korlátos lineáris operáció, amely szintén véges dimenziós vektortérbe képez. Ez röviden azt jelenti, hogy ha L az operáció, akkor L(a+t*b)=L(a)+t*L(b) minden a,b vektortérbeli elemre és minden t valós számra (ha a valós számtest feletti vektortérről van szó). Egy ilyen operáció reprezentálható egy mátrixszal, amelynek oszlopai megadják, hogy az L operáció értelmezési tartományának bázisvektorai az L által milyen vektorba képeződnek. Az általad ismert mátrixszorzás pedig nem más, mint az általuk reprezentált operációk egymás utáni alkalmazása által nyert operáció mátrix reprezentánsa. A mátrix összeadás pedig az operációk egyszerű függvény összeadása (természetesen a vektortérbeli összeadás szerint). Látható, hogy a téglalap séma csak technikai könnyítés (jelölés), és nem tartozik a mátrix lényegéhez.

Előzmény: [175] Willy, 2007-03-22 12:00:54
[176] HoA2007-03-22 14:06:25

Valóban, a legegyszerűbben a Sirpi által leírt módon, tehát pihagoraszi számhármasok "átfogóinak" összeszorzásával lehet ilyen számokat találni. De példád éppen arra mutat rá, hogy nemcsak ilyen megoldások vannak, és talán ezek az érdekesebbek.

A szorzásos módszerrel 65 = 5 * 13, vegyük tehát a (3,4,5) és (5,12,13) hármasokat, ezekből adódik (39,42,65) és (25,60,65). A primitív pithagoraszi hármasokat előállító képlet szerint (x2-y2,2xy,x2+y2) 65-öt mint két primitív "átfogó" egészszám-szorosát kapjuk: 13.(22+12) illetve 5.(32+22)

A Te példádban a 65 két primitív pithagoraszi hármas átfogójaként áll elő: x=8, y=1 választással (63,16,65), ahol 65=82+12, illetve x=7, y=4 választással (33,56,65) - és nem 53 - , ahol 65=72+42

Érdekes lenne bizonyítani, hogy végtelen sok szám áll elő többféleképpen két relatív prím négyzetszám összegeként, illetve hogy bármilyen n-re vannak olyan számok, melyek n féleképpen állíthatók elő két relatív prím négyzetszám összegeként.

Előzmény: [173] Borgi - Tóth Áron, 2007-03-21 22:05:13
[175] Willy2007-03-22 12:00:54

Nem tudom, hogy ide tartozik-e vagy nem, de:

Léteznek-e több dimenziós mátrixok a matematikában, és ha igen, akkor mire és hogyan lehet őket használni (pl. két 3D mátrixot hogyan lehet összeszorozni, vagy mi a determinánsa)?

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]    [47]    [48]    [49]    [50]    [51]    [52]    [53]    [54]    [55]    [56]    [57]    [58]    [59]    [60]    [61]    [62]    [63]    [64]    [65]    [66]    [67]    [68]    [69]    [70]    [71]    [72]    [73]    [74]    [75]    [76]    [77]    [78]    [79]    [80]    [81]    [82]    [83]    [84]    [85]    [86]    [87]    [88]    [89]    [90]    [91]    [92]    [93]