|
|
[197] Lóczi Lajos | 2007-04-17 00:06:51 |
http://mathworld.wolfram.com/HadwigerProblem.html
http://mathworld.wolfram.com/CubeDissection.html
Ezek megmondják, hogy az Amer. Math. Monthly melyik számában van meg a megoldás, a könyvtárban tehát utánanézhetsz szükség esetén.
|
Előzmény: [196] V Laci, 2007-04-16 14:29:56 |
|
[196] V Laci | 2007-04-16 14:29:56 |
Szia!
Igen, tényleg ezt szeretném bizonyítani. A többi maradékra már megvan a szerintem legkisebb konstrukció, azonban az 5-ös maradékra a legkisebb, amit elő tudtam állítani, az a 61 kockás darabolás. És szeretnék lejjebb menni. :)
|
Előzmény: [195] Sirpi, 2007-04-16 13:38:38 |
|
[195] Sirpi | 2007-04-16 13:38:38 |
Szia!
Fel tudtam valaha, egyszer már végigküzdöttem ezt. Gondolom azt akarod bizonyítani, hogy ha n>47, akkor egy kocka felosztható n kisebb kockára, és ebből tényleg a legnehezebb lépés az n=54 eset megoldása. Ugye ha összevonunk 8 egybevágó kockát egy kétszer akkorává, akkor a darabszám 7-tel csökken, vagyis ilyen lépések során a 7-es maradék nem változik. Éppen ezért elég minden 7-es maradékú n-re megoldani a felosztást, ugyanabban a maradékosztályban a nagyobbakra automatikusan adódik.
A nagy kockánál ez a maradék 1, viszont nekünk az 5-ös maradékot kell megcéloznunk, tehát 4-gyel kell növelni. Egy kocka 3x3x3-má vágása 2-vel csökkenti a 7-es maradékot, ugyanígy 3x3x3 összeforrasztása meg 2-vel növeli. Régen is így csináltam valahogy, de most még nem látom még pontosan, hogy hogy is volt a tényleges felosztás, de hátha ez alapján valaki más gyorsan megcsinálja :-)
|
Előzmény: [194] V Laci, 2007-04-16 13:08:16 |
|
[194] V Laci | 2007-04-16 13:08:16 |
Sziasztok! Fel lehet-e darabolni egy kockát 54 kiskockára? Ha igen, hogyan? Előre is köszönöm!
|
|
[193] HoA | 2007-04-12 15:02:16 |
1/7 tizedestört alakban = 0,142857142857142857142857142857... , vagyis a jegyek 6-osával ismétlődnek. 2004 osztható 6-tal ( 3-mal osztható és páros ) , tehát a 2005-ik jegy a ciklus első jegye, vagyis 1.
|
Előzmény: [190] hajnalkalive, 2007-04-11 18:32:35 |
|
[192] phantom_of_the_opera | 2007-04-11 23:22:44 |
Sziasztok! Gráfos feladattal kapcsolatban kérnék segítséget: Bizonyítsuk be, hogy ha egy n pontú egyszerű gráf leghosszabb útja két végpontjának fokszámösszege legalább n, akkor a leghosszabb utak között van 2, amelyek végpontjai szomszédosak. Előre is köszönöm.
|
|
|
[190] hajnalkalive | 2007-04-11 18:32:35 |
Tud segíteni valaki?
Mennyi 2005 számjegy a tizedesvessző után 1/7 tizedestört alakban?
Egy téglalp átlói d cm hosszúak, az átlók által bezárt hegyesszög alfa fok. Fejezzük ki a téglalp területét és kerületét d-vel és alfával.
|
|
|
[188] Lóczi Lajos | 2007-04-10 23:39:52 |
Reggelre kell? :)
Biztos leírtunk egy ilyet már itt: Pitagorasz-tétel a jobboldali tag kitevőjében (cos2(x)=1-sin2(x)), új ismeretlen (A:=4sin2(x)) és másodfokú egyenlet.
4sin2(x)+41-sin2(x)=4, azaz A+4/A=4, vagyis A1,2=2, tehát , ezt meg kitalálod.
|
Előzmény: [187] pvong17, 2007-04-10 23:16:19 |
|
[187] pvong17 | 2007-04-10 23:16:19 |
Üdvözlet mindenkinek!
Jó lenne a segítene valaki ebben , már nem nagyon tudok sehová fordulni:
4sin2x + 4cos2x = 4
|
|
|
[185] Willy | 2007-03-30 16:50:25 |
Szeretnék egy egyszerű modellt kreálni a globális felmelegedés modellezésére, de honnét lehetne megbízható adatokat szerezni? (Pl.: CO2 mennyire fogja vissza a meleget... ezt a molekula méretéből is meg lehet-e mondani?)
|
|
|
|
|
|
[180] S.Ákos | 2007-03-29 20:47:42 |
Sziasztok!
Egyik matematikafeladat továbbgondolásánál jött elő a következő probléma: Hogyan lehetne közelíteni a sor összegét?
|
|
[179] csocsi | 2007-03-22 19:53:56 |
Sziasztok! Van egy ilyen kirakós játékom, amit az ábrán láthattok (9 darabból áll). A helyzet az, hogy nem tudom hogyan kell kirakni, ha valaki tudja, hogy kell vagy akár csak a nevét ismeri, kérem mondja meg! Köszönöm.
|
|
|
[178] Lóczi Lajos | 2007-03-22 16:45:18 |
A "többdimenziós mátrixokat" szokás tenzoroknak vagy multilineáris leképezéseknek nevezni (melyek bizonyos transzformációs szabályoknak engedelmeskednek). A multilineáris leképezés olyan, hogy több vektorhoz rendel egy számot, és mindegyik változójában lineáris. A fizikában, differenciálgeometriában, analízisben (pl. R2R2 függvények magasabbrendű deriváltjai multilineáris leképezések) sokszor használatosak.
Néhány keresőszó:
multilinear algebra, multilinear form, tensor, tensor product. Két példa:
http://documents.wolfram.com/v5/Built-inFunctions/ListsAndMatrices/StructureManipulation/FurtherExamples/Inner.html
http://documents.wolfram.com/v5/Built-inFunctions/NumericalComputation/MatrixOperations/FurtherExamples/Outer.html
|
Előzmény: [175] Willy, 2007-03-22 12:00:54 |
|
[177] jenei.attila | 2007-03-22 14:15:55 |
Tudtommal nem léteznek, ugyanis a mátrix nem egy téglalap sémába rendezett számcsoport (csak annak látszik). Lényegében a mátrix véges dimenziós vektortéren értelmezett korlátos lineáris operáció, amely szintén véges dimenziós vektortérbe képez. Ez röviden azt jelenti, hogy ha L az operáció, akkor L(a+t*b)=L(a)+t*L(b) minden a,b vektortérbeli elemre és minden t valós számra (ha a valós számtest feletti vektortérről van szó). Egy ilyen operáció reprezentálható egy mátrixszal, amelynek oszlopai megadják, hogy az L operáció értelmezési tartományának bázisvektorai az L által milyen vektorba képeződnek. Az általad ismert mátrixszorzás pedig nem más, mint az általuk reprezentált operációk egymás utáni alkalmazása által nyert operáció mátrix reprezentánsa. A mátrix összeadás pedig az operációk egyszerű függvény összeadása (természetesen a vektortérbeli összeadás szerint). Látható, hogy a téglalap séma csak technikai könnyítés (jelölés), és nem tartozik a mátrix lényegéhez.
|
Előzmény: [175] Willy, 2007-03-22 12:00:54 |
|
[176] HoA | 2007-03-22 14:06:25 |
Valóban, a legegyszerűbben a Sirpi által leírt módon, tehát pihagoraszi számhármasok "átfogóinak" összeszorzásával lehet ilyen számokat találni. De példád éppen arra mutat rá, hogy nemcsak ilyen megoldások vannak, és talán ezek az érdekesebbek.
A szorzásos módszerrel 65 = 5 * 13, vegyük tehát a (3,4,5) és (5,12,13) hármasokat, ezekből adódik (39,42,65) és (25,60,65). A primitív pithagoraszi hármasokat előállító képlet szerint (x2-y2,2xy,x2+y2) 65-öt mint két primitív "átfogó" egészszám-szorosát kapjuk: 13.(22+12) illetve 5.(32+22)
A Te példádban a 65 két primitív pithagoraszi hármas átfogójaként áll elő: x=8, y=1 választással (63,16,65), ahol 65=82+12, illetve x=7, y=4 választással (33,56,65) - és nem 53 - , ahol 65=72+42
Érdekes lenne bizonyítani, hogy végtelen sok szám áll elő többféleképpen két relatív prím négyzetszám összegeként, illetve hogy bármilyen n-re vannak olyan számok, melyek n féleképpen állíthatók elő két relatív prím négyzetszám összegeként.
|
Előzmény: [173] Borgi - Tóth Áron, 2007-03-21 22:05:13 |
|
[175] Willy | 2007-03-22 12:00:54 |
Nem tudom, hogy ide tartozik-e vagy nem, de:
Léteznek-e több dimenziós mátrixok a matematikában, és ha igen, akkor mire és hogyan lehet őket használni (pl. két 3D mátrixot hogyan lehet összeszorozni, vagy mi a determinánsa)?
|
|