Ha szélsőértékhelyeket keresünk csak első deriválttal, akkor igazából kizárásos alapon találjuk meg a szélsőértékhelyeket. Olyan, mint egy klasszikus krimitörténet.
Valahonnan tudjuk hogy bűncselekmény történt: valaki betört az MNB-be és felvette a maximumot. Rajta kívül egy idióta is betört, de ő a minimumot vette fel. Az egyiket börtönbe akarjuk zárni, a másikat diliházba. Mondjuk van egy folytonos \(\displaystyle f:[0,1]\to\mathbb{R}\) függvényünk: ennek a Weierstrass-tétel miatt biztosan van legnagyobb és legkisebb értéke.
A felügyelő kikérdezi az összes gyanúsítottat, vagyis az összes \(\displaystyle [0,1]\)-beli pontot, hogy milyen alibije van. Aki igazolni tudja, hogy ő egy olyan belső pont, ahol \(\displaystyle f\) differenciálható, és a derivált nem nulla, annak alibije van: az ilyen helyeken a függvény lokálisan szig. növekvő/csökkenő, így biztosan nincs szélsőérték sem.
A film utolsó részében összegyűjtjük azokat, akiknek nincs alibije: az intervallum végpontjait, azokat a belső pontokat, ahol a függvény nem differenciálható, vagy éppen differenciálható, de a derivált nulla. Ha szerencsénk van, akkor kevés (véges sok) gyanúsított maradt: ezeket kikérdezzük, vagyis behelyettesítjük a függvénybe. Így kiderül, hogy hol van a maximum és minimum, és kik azok a gyanúsítottak, akik csak rosszkor voltak rossz helyen.
A Lagrange-multiplikátor módszer is ugyanilyen, bizonyos pontoknak alibit biztosít. Annyit állít, hogy azok a pontok, ahol az összes feltétel (egyenlet) teljesül, a feltételek és a célfüggvény folytonosan differenciálható (ehelyett az is elég, ha abban a pontban differenciálhatóak és egy környezeben foytonosak), továbbá a feltételek és a célfüggvény gradiens vektorai lineárisan függetlenek, ott nincs feltételes lokális szélsőértékhely. Ezt persze megfordítva szoktuk használni: ahol feltételes lokális szélsőértékhely van, ott a gradiensvektorok vagy nem is léteznek, vagy lineárisan összefüggőek, tehát valamelyik felírható a többi gradiens egy lineáris kombinációjaként; ebben a lin. kombinációban szereplő együtthatók a "Lagrange-multiplikátorok".
* * *
Téged persze a második derivált szerepe érdekel; sajnos a szinguláris pontokban, ahol feltételek gradiensvektorai lineárisan összefüggőek, ott az egyenletrendszer lokális megoldásai többnyire nem adnak szép felületdarabot. Akár már egyetlen feltétel/egyenlet esetén is, ahol a derivált a nullvektor, ronda lehet a megoldáshalmaz.
A reguláris pontokban, ahol az egyenleteink gradiensvektorai függetlenek, ott az implicitfüggvény-tétel szerint van szép lokális megoldás, felületdarab, és néhány változó egyértelműen meghatározza a többit. Lehetséges egy ügyesen összerakott függvény második deriváltmátrixának definitségét vizsgálni. Ehhez mindenféle parciális derivált mátrixokkal és inverzeikkel kell számolni. Nem szép, de legalább lehetséges...
* * *
A legegyszerűbb eset persze a 2 változó, 1 feltétel. Legyen \(\displaystyle f(x,y)=0\) a feltétel; ezen a "görbén" keressük egy \(\displaystyle g(x,y)\) függvény lokális szélsőértékeit. Tegyük fel, hogy egy \(\displaystyle (a,b)\) rajta van a görbén, tehát \(\displaystyle f(a,b)=0\), és a pont egy környezetében \(\displaystyle f\) és \(\displaystyle g\) is kétszer differenciálható. És azt is tegyük fel, hogy \(\displaystyle (a,b)\) a görbének nem szinguláris pontja, vagyis legalább az egyik parciális derivált nem \(\displaystyle 0\); mondjuk az \(\displaystyle y\)-szerinti. (A parciáls deriváltakat alsó indexekkel fogom jelölni, tehát \(\displaystyle f_2(a,b)\) az \(\displaystyle f\) második változó szerinti parciális deriváltja: \(\displaystyle f_2(a,b)\ne0\).)
Az implicitfüggvény-tétel szerint van \(\displaystyle (a,b)\) körül egy \(\displaystyle A\times B\) téglalap, amelyben görbénk egy függvény grafikonja: van egy egyértelmű \(\displaystyle h:A\to B\) implcit függvény, ami megoldása az \(\displaystyle f(x,h(x))=0\) egyetletnek; ez a \(\displaystyle h(x)\) függvény differenciálható is, és
\(\displaystyle h'(x) = -\frac{f_1(x,h(x))}{f_2(x,h(x))}.\)
A függvényt akár még egyszer differenciálhatjuk, ebből látjuk, hogy a \(\displaystyle h(x)\) függvény kétszer is differenciálható.
Minket az érdekel, hogy a \(\displaystyle G(x)=g(x,h(x))\) függvénynek milyen szélsőértéke lehet az \(\displaystyle a\) pontban.
A számolást úgy lehet szebben leírni, hogy magát az \(\displaystyle f(x,h(x))=0\) azonosságot és a \(\displaystyle G(x)=g(x,h(x))\) függvényt deriváljuk kétszer az \(\displaystyle a\) pontban:
\(\displaystyle f_1(a,b)) + f_2(a,b)\cdot h'(a) = 0 \)
\(\displaystyle f_{11}(a,b)) + 2f_{12}(a,b))\cdot h'(a) + f_{22}(a,b))\cdot h'(a)^2 + f_2(a,b)) \cdot h''(a) = 0 \)
\(\displaystyle G'(a) =
g_1(a,b) + g_2(a,b)\cdot h'(a) \)
\(\displaystyle G''(a) =
g_{11}(a,b)) + 2g_{12}(a,b)\cdot h'(a) + g_{22}(a,b))\cdot h'(a)^2 + g_2(a,b)) \cdot h''(a) \)
Az első kettőből kifejezhetjük \(\displaystyle h'(a)\) és \(\displaystyle h''(a)\) értékét; mindkét esetben \(\displaystyle f_2(a,b)\)-vel kell osztani, ami nem nulla; a \(\displaystyle G'(a)\) akkor nulla, ha a két gradiens párhuzamos; végül megkapjuk \(\displaystyle G''(a)\) értékét, és megvizsgálhatjuk az előjelét...
|