Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?

Fórum: Valaki mondja meg!

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]  

Szeretnél hozzászólni? Jelentkezz be.
[548] S.Ákos2008-06-24 12:32:10

köszönöm szépen a segítségeketeket

Előzmény: [547] Róbert Gida, 2008-06-24 00:27:47
[547] Róbert Gida2008-06-24 00:27:47

Mordell egyenlet a neve, nagyon sok kis értékre az összes megoldását kiszámolták már, azt hiszem magyarok eredménye a következő táblázat is, szinte az oldal legalján van a te egyenleted az -00020, ahogy látod nincs más természetes egész megoldása:

http://tnt.math.metro-u.ac.jp/simath/MORDELL/MORDELL-

Előzmény: [544] S.Ákos, 2008-06-23 21:32:04
[546] Ansible2008-06-23 23:43:19

Bocs: az x2+20 alakithato itt szorzatta: (x+2i\sqrt{5})(x-2i\sqrt{5}).

Előzmény: [545] Ansible, 2008-06-23 23:41:29
[545] Ansible2008-06-23 23:41:29

A Freud-Gyarmati: Szamelmelet-ben benne van, hogy az x2+5=y3-nek nincs megoldasa. Ez a 11.6.4/a feladat. A megoldas soran az a+b\sqrt{5}i-ben alakitjuk szorzatta a baloldalt, es mivel ebben a gyuruben nem ervenyes a szamelmelet alaptetele, az idealokkal kell jatszani.

Az x2+5=y3 ugyanebben a gyuruben alakithato szorzatta. Ketlem, hogy a fentinel kiralyibb ut lenne.

Előzmény: [544] S.Ákos, 2008-06-23 21:32:04
[544] S.Ákos2008-06-23 21:32:04

Sziasztok! Valaki segítene megoldani az x2+20=y3 egyenletet, ha x,y\inN?. Előre is köszönöm. (x=14 y=6 jó, de y=2000-ig valószínűleg nincs más)

[542] Csimby2008-06-08 17:41:37

1.a: x -> 2x (x\inZ számhoz a kétszeresét rendeli, könnyen látható hogy ez injektív, szürjektív -> bijekció)

1.b: x -> 2x+3

2.: Csak az a feladat, hogy valahogy felsoroljuk őket (ugye az hogy 0,1,2,3,... nem jó mert a negatívok kimaradnak): 0,1,-1,2,-2,3,-3,...

Előzmény: [541] Norbert, 2008-06-08 17:20:09
[541] Norbert2008-06-08 17:20:09

Hi! Szerdán vizsgázok, sajnos és segítséget szeretnék kérni kettő feladatba mivel utálom a halmazokat. ELőre is köszönöm.

1. Adjon meg bijekciót két halmaz között: a) a pozitív egész számok halmaza és a páros pozitív számok halmaza; b) a [0,1] intervallum és a [3,5] intervallum.

2. Adja meg az egész számok halmazának egy sorozatbarendezését. (légyszi írja le vki hogy ez valójában mi vagy mit értünk ez alatt?)

[540] Sirpi2008-06-02 07:44:04

Az irracionális számok képe legyen önmaga; ekkor már csak a rac. számokat kell párosítani. Soroljuk fel az összes [0,1]-beli rac. számot (q1,q2,...), ezek közül az 1 legyen a qk. Ha i<k, akkor qi-hez rendeljük önmagát, ha i>k, akkor qi képe legyen qi-1 (így qk kivételével minden rac. számhoz hozzárendeltünk egy rac. számot).

* * *

Ugyanez kicsit egyszerűbben:

Ha az x\in[0,1) szám 1/2k alakú, akkor x\to2x, ellenkező esetben x\tox.

Előzmény: [539] Gyöngyő, 2008-06-02 00:14:55
[539] Gyöngyő2008-06-02 00:14:55

Üdv! Aki tud légyszi segítsen megoldani a feladatot, mert szerdán sajnos vizsgázok. Előre is köszönöm.

Feladat: Adjon meg bijekciót a [0,1) és [0,1] halmazok között.

[538] nadorp2008-05-23 07:54:54

Tudom, hogy a példa már történelem :-), de itt egy közvetlen levezetés.

Legyen a_n=\frac12*\frac13*...*\frac1n

Ekkor a_{n+1}=a_n*\frac1{n+1}=\frac{(n+1)a_n+1}{a_n+n+1}, így

a_{n+1}+1=\frac{(n+2)(a_n+1)}{a_n+n+1} és

a_{n+1}-1=\frac{n(a_n-1)}{a_n+n+1} tehát

\frac{a_{n+1}+1}{a_{n+1}-1}=\frac{n+2}n\cdot\frac{a_n+1}{a_n-1}=...=\frac{(n+2)(n+1)...4}{n(n-1)...2}\cdot\frac{a_2+1}{a_2-1}=-\frac{(n+1)(n+2)}2

Innen a_n=\frac{n^2+n-2}{n^2+n+2}, ami persze azonos Sirpiével.

[537] jonas2008-05-20 23:59:03

De, csak \lambda=1/c2. Akkor innen ismerhettem ezt a képletet.

Előzmény: [536] jonas, 2008-05-20 23:55:43
[536] jonas2008-05-20 23:55:43

Egyébként ez nem pont a spec. relativitáselméletes addíciós képlet a sebességekre, ha \lambda=1/c?

Előzmény: [534] Sirpi, 2008-05-20 23:51:25
[535] jonas2008-05-20 23:52:56

Persze, én is a tangensről tudtam de a  \tg\left(\sqrt{-\lambda}\cdot x\right) képlet rondábban néz ki.

Előzmény: [534] Sirpi, 2008-05-20 23:51:25
[534] Sirpi2008-05-20 23:51:25

Ja, végül is ez tényleg megmagyarázza :-)

A -1-re megvolt a sima tangens, +1-re meg a feladat miatt megnéztem külön, aztán általánosan is. Bevallom, rég volt szükségem a th addiciós képletére...

Előzmény: [533] jonas, 2008-05-20 23:45:11
[533] jonas2008-05-20 23:45:11

Meglepett? Azt hittem, tudtad, hogy azért igaz, mert valami  a = \th \left(\sqrt\lambda\cdot x\right) vagy hasonló helyettesítéssel összeadásba (negatív \lambda esetén modulo \pi összeadásba) megy át.

Előzmény: [531] Róbert Gida, 2008-05-20 22:48:30
[532] Sirpi2008-05-20 23:39:40

Ja, valóban ez a megoldás, de 3 sorban, papíron is kijön ;-) Mindenesetre engem meglepett ez a tény.

Előzmény: [531] Róbert Gida, 2008-05-20 22:48:30
[531] Róbert Gida2008-05-20 22:48:30

Minden \lambda értékre. Pari-Gp-ben felírtam az asszociativitás feltételét, a két oldal különbsége meg nulla lett.

Előzmény: [530] Sirpi, 2008-05-20 22:38:16
[530] Sirpi2008-05-20 22:38:16

Ja, egyébként kicsit csaltam a megoldásnál, hiszen nem volt bezárójelezve a kiszámolandó kifejezés, és én balról jobbra végeztem el. Ennek alapján kérdés:

A *:R2\toR művelet, amit úgy definiálunk, hogy a*b = \frac {a+b}{1 + \lambda ab} mely \lambda értékekre asszociatív? (A kommutativitás magától értetődő a szimmetria miatt).

Előzmény: [522] Sirpi, 2008-05-20 08:08:14
[529] Róbert Gida2008-05-20 18:29:09

"ha nem lenne az, akkor a pozitív egész szám elnevezésnek nem lenne értelme"

Így viszont a nemnegatív egész szám elnevezésnek nincs értelme.

Előzmény: [526] rizsesz, 2008-05-20 15:53:28
[528] Káli gúla2008-05-20 16:37:30

Az persze kérdés, hogy ki mit tekint logikus vagy nyilvánvaló dolognak. Lehet, hogy sok embert éppen a logika téveszt meg a 0-val kapcsolatban:

(1) Valaminek a fele mindig kisebb, mint maga a valami (feleakkora).    (2) A 0-nál nincs kisebb.    (3) Tehát a 0-nak nincsen fele.

Logikusnak tűnik. (Azt hiszem, Arisztotelész mondta, hogy a nehezebb test nyilvánvalóan gyorsabban esik, mint a könnyebb. Galilei adott egy gyönyörű indirekt bizonyítást arra, hogy ez nem igaz.)

Előzmény: [526] rizsesz, 2008-05-20 15:53:28
[527] Csimby2008-05-20 15:58:38

Én úgy emlékszem általános iskolában nem volt se páros, se páratlan. Egyetmen páros. Gimiben is páros. De hogy a 0 természetes szám-e, az előadónként változik :-)

[526] rizsesz2008-05-20 15:53:28

A -400 pedig nem egy racionális szám négyzete... Szerintem a matematika egy abszolút logikus dolog, ahogyan az már korábban kiderült, pl. a 11-szög szerkesztéses témában. Szerintem nincsen értelme arról beszélni, hogy a 0 páros-e, mert abszolúte nyilvánvalóan az, akármelyik szabály szerint is vizsgáljuk. Hasonló ez ahhoz a kérdéshez, hogy 0 természetes szám-e (itt már csak a kicsit szofisztikált "ha nem lenne az, akkor a pozitív egész szám elnevezésnek nem lenne értelme" indoklás győtött meg engem a megállapodásokon túl :))

Előzmény: [525] BohnerGéza, 2008-05-20 15:23:16
[525] BohnerGéza2008-05-20 15:23:16

A 0 nem negatív és nem pozitív. Az 1 nem prím és nem összetett. (Valamint a gyök 2 nem páros és nem páratlan.)

Ha jól emlékszem.

Előzmény: [520] dadika, 2008-05-19 22:07:26
[524] dadika2008-05-20 13:26:06

Matek...

Előzmény: [521] jonas, 2008-05-19 22:47:42
[523] epsilon2008-05-20 10:14:23

Valóban Sirpi, a nagy sebességgel elpötyögtem a * helyett +. Kösz a szép általánosítást! Üdv: epsilon

Előzmény: [522] Sirpi, 2008-05-20 08:08:14
[522] Sirpi2008-05-20 08:08:14

Gondolom a plusz jelek helyett is csillagokat kell érteni.

Teljes indukcióval könnyen igazolható az állítás, nevezetesen:

\frac 12 * \frac 13 * \dots * \frac 1k = 1 - \frac 2{\binom {k+1}2 + 1}

Ha k=2, akkor 1 - \frac 2{\binom 32 + 1} = 1 - \frac 24 = \frac 12, tehát az állítás igaz.

Most bizonyítsuk k-1-ről k-ra:

\frac 12 * \frac 13 * \dots * \frac 1k = \left( 1 - \frac 2{\binom k2 + 1} \right) * \frac 1k = \frac {1 - \frac 2{\binom k2 + 1} + \frac 1k}{1 + \left( 1 - \frac 2{\binom k2 + 1} \right) \cdot \frac 1k}

Bővítsünk a két nevező szorzatával:

=\frac {\left( \binom k2 + 1\right)k - 2k + \binom k2 + 1}{\left( \binom k2 + 1\right)k + \binom k2 - 1} = 1 - \frac{2(k-1)}{\left( \binom k2 + 1\right)k + \binom k2 - 1}=

= 1 - \frac {2(k-1)}{\binom k2 \cdot (k+1) + k-1} = 1 - \frac {2(k-1)}{(k-1)\cdot \left( \binom{k+1}2 + 1\right)}

Itt (k-1)-gyel lehet egyszerűsíteni, és be is bizonyítottuk az állítást.

Előzmény: [519] epsilon, 2008-05-19 20:24:41
[521] jonas2008-05-19 22:47:42

Matektanár volt, vagy valami más tárgy tanára?

Előzmény: [520] dadika, 2008-05-19 22:07:26
[520] dadika2008-05-19 22:07:26

Köszönöm a választ.

Igen, minden oldalról közelítve párosnak tűnik. Nekem viszont egyszer egy tanár azt mondta, hogy se nem páros, se nem páratlan(lehet, hogy rosszul emlékszek) A matek szóbeli tételnél jött elő, nem a rulettre gondoltam.

Előzmény: [513] SmallPotato, 2008-05-19 13:58:23
[519] epsilon2008-05-19 20:24:41

Helló! Még van egy szaporátlan feladat, jó lenne valami szabály ennek az elvégzésére! Előre is kösz, üdv: epsilon

[518] jonas2008-05-19 19:00:22

Nekem az alsó és felső társai inkább a külső és belső, de biztos csak Tamkó Sirató Károly dalai miatt gondolom.

Előzmény: [513] SmallPotato, 2008-05-19 13:58:23
[517] epsilon2008-05-19 18:23:43

Helló! Köszi Káli gúla! Valóban, így még ha "határérték szagja" is van, de meg lehet "lobbyzni"! ;-) Üdv: epsilon

[516] Káli gúla2008-05-19 17:09:09

Nem kell határérték ahhoz, hogy az x=-y választásnál ha |a-b|\frac{x}{1-x^2}<1 minden x\in(0,1), akkor a=b. Szorozd meg (1-x2)-tel: |a-b|x<1-x2. Ez csak úgy lehet, ha |a-b|=0. Persze el lehet mondani határértékkel is, de egyszerűbb lerajzolni.

Előzmény: [515] epsilon, 2008-05-19 15:57:41
[515] epsilon2008-05-19 15:57:41

Pontosabban az a gondom vele, hogyaz a=b egyenlőséget limesszel tudtam bizonyítani. Vázolom: legyen x=1-1/n és y=-1+1/n. Ezeket beírva a * műveletve, a határárték [-1;1] közöt kellene legyen, ellenben a tört nevezője a 0-hoz tart, a számláló pedig (a-b)-hez, így véges határérték csak a 0/0 határozatlan esetből adódhat. Tehát szükséges, hogy a=b legyen. Tényleg nem jönne össze analízis nélkül? Üdv: epsilon

[514] epsilon2008-05-19 15:49:58

Helló! Megint akadt egy látszatra könnyű feladat,bármilyen ötletet szívesen várok! Előre is kösz, epsilon

[513] SmallPotato2008-05-19 13:58:23

Engem (is?) érdekelne, hogy milyen apropóból merült fel ez a kérdés.

Végülis ha "definíció" szerint nézzük, akkor is páros (azaz 2-vel osztva 0 maradékot ad), ha "emberi" módon nézzük (kettesével lépkedve egy nem-0 páros számtól indulva), akkor is páros ...

A rulett kétségkívül más - a kártyához hasonlóan, ahol az alsó és a felső társai nem az elülső, hátulsó és az oldalsó, hanem a király és az ász. :-)))

Előzmény: [511] dadika, 2008-05-19 12:01:27
[512] jonas2008-05-19 12:26:49

Páros; kivéve esetleg ha rulettozol.

Előzmény: [511] dadika, 2008-05-19 12:01:27
[511] dadika2008-05-19 12:01:27

Sziasztok!

Egy nagyon egyszerű kérdésre szeretnék választ kapni, a 0 az páros szám, vagy se nem páros se nem páratlan.

[510] Káli gúla2008-05-18 19:33:14

Az egyenletet felírhatod abból kiindulva is, hogy a belső szögfelező egyenesének normálvektora a külső szögfelező iránya, ez pedig az oldalirányú egységvektorok különbsége: ÿ \frac{{\bf b}-{\bf a}}{|{\bf b}-{\bf a}|} - 
\frac{{\bf c}-{\bf a}}{|{\bf c}-{\bf a}|} (|v| a vektor hosszát jelenti). Tehát a keresett egyenlet:

 (x-a_1)\Big(\frac{b_1-a_1}{|{\bf b}-{\bf a}|} - \frac{c_1-a_1}{|{\bf c}-{\bf a}|}\Big) +
(y-a_2)\Big(\frac{b_2-a_2}{|{\bf b}-{\bf a}|} - \frac{c_2-a_2}{|{\bf c}-{\bf a}|}\Big) =0

Előzmény: [507] komalboy, 2008-05-18 11:45:52
[509] BohnerGéza2008-05-18 18:14:55
Előzmény: [507] komalboy, 2008-05-18 11:45:52
[508] Róbert Gida2008-05-18 13:44:28

cos(\frac {\alpha}{2})*y-sin(\frac {\alpha}{2})*x=0 az egyenlete az A csúcsból kiinduló (belső) szögfelezőnek, ha az A=(0,0),B=(c,0),C=(b*cos(\alpha),b*sin(\alpha)).

Előzmény: [507] komalboy, 2008-05-18 11:45:52
[507] komalboy2008-05-18 11:45:52

Sziasztok!

Valaki leírná általánosan a háromszög egyik belső szögének szögfelező egyenesének egyenletét??? előre is köszönöm

[506] epsilon2008-05-02 20:12:36

Helló Róbert Gida! A 659)-es feladatra ennél szebb, egyszerűbb megoldást elképzelni sem lehet, gatulálok, köszi! a 691)-es feladat esetén valóban úgy tűzték ki, hogy a limeszét kérték, de Én blöffnek láttam, minekutána az [503]-nál vázoltam a gondolatmenetet, hát azt nagyon át kell néznem, hogy miért hibás az, hogy egyenként kijön az a 6 integrálnak a közös pi/12 érték, de lehet, hogy nem hibás, hanem a limesszel már másként alakul. Szóval jó sejtésed volt, hogy a limeszt odatetted. Szóval most azt a megoldást is alaposa átmazyolázom, haddlám mit tévesztettem szem elől, a társintegráljaim esetén. Mindenképpen, ez a megoldásod lényegesen rövidebb mint amibe Én belekezdtem. Gratulálok, és kösz, üdv: epsilon

[505] Róbert Gida2008-05-02 17:06:23

Ordít az integrálról a szimmetria, y=3-x helyettesítéssel az intervallum második felében:

\int _{0}^3 \frac {\sqrt{x}}{\sqrt{x}+\sqrt{3-x}}=\int _{0}^{\frac 32} \frac {\sqrt{x}}{\sqrt{x}+\sqrt{3-x}}+\int _{\frac 32}^3 \frac {\sqrt{x}}{\sqrt{x}+\sqrt{3-x}}=\int _{0}^{\frac 32} \frac {\sqrt{x}}{\sqrt{x}+\sqrt{3-x}}+\int _{\frac 32}^0 \frac {-\sqrt{3-y}}{\sqrt{3-y}+\sqrt{y}}=

\int _{0}^{\frac 32} \frac {\sqrt{x}}{\sqrt{x}+\sqrt{3-x}}+\int _{0}^{\frac 32} \frac {\sqrt{3-y}}{\sqrt{3-y}+\sqrt{y}}=\int _{0}^{\frac 32} \frac {\sqrt{x}+\sqrt{3-x}}{\sqrt{x}+\sqrt{3-x}}=\frac 32

Előzmény: [502] epsilon, 2008-05-02 15:11:49
[504] Róbert Gida2008-05-02 16:50:47

De persze csak n tart végtelen esetén lesz annyi az integrál, adott n-re nem annyi. Számlálóval beosztva szebb az integrál:

\int _{0}^{\frac {\Pi}{3}} {\frac {1}{1+cotan(x)^n}}

Ami így írva már kellemes, hiszen 0<x<\frac {\Pi}{4} esetén 1<cotan(x), míg \frac {\Pi}{4}<x<\frac {\Pi}{3} esetén 0<cotan(x)<1. Rögzített \epsilon>0-ra, amit integrálni kell az tart 1-hez a [\frac {\Pi}{4}+\epsilon,\frac {\Pi}{3}] intervallumon, így az integrál \frac {\Pi}{12}-höz tart. Míg [\epsilon,\frac {\Pi}{4}-\epsilon] intervallumon 0-hoz tart, így az integrál is. A kimaradó két intervallum hossza 0-hoz tart, de rajta korlátos függvényt integrálunk, így az integrál is 0-hoz tart, ha \epsilon tart 0-hoz. Így az integrál \frac {\Pi}{12}.

Előzmény: [503] epsilon, 2008-05-02 15:29:53
[503] epsilon2008-05-02 15:29:53

Helló! A feltételezhetően utolsó (?) integrál az alábbi: ezzel az a gond, hogy nagyon hosszas, és az eredmény duplája az-az pi/6 jött ki a pi/12 helyett. A megoldásvázlat: Legyen I ugyanaz az integrál mint a képen, de 0 és pi/2 között. Ezt felbontottam I=I1+I2+I3 integrálokra, pi/6 és pi/3 osztópontoknál. Hozzárendeltem a J=J1+J2+J3 társintegrálokat, amik ugyanolyanok mint az előzőek, de a számlálókban sin helyett cos van. Nem nehéz igazolni, hogy I=J=pi/4. Ezután változócseréket végeztem és I1=J3, és ilyesmik adódtak. Az lett a vége, hogy mind a 6 számozott integrál egyenlő, és közös értékük pi/12. De ezzel, a kitűzött feladat integrálja I1+I2=pi/6 és nem pi/12 :-( A megoldásom hibás, vagy a kitűzött feladatban a felső korlát pi/6 kellene legyen a pi/3 helyett? Vagy ??? Ez a feladat, kösz, üdv: epsilon.

[502] epsilon2008-05-02 15:11:49

Helló! Szerencsémre már fogytá vannak az integrálok :-) Az alábbi integrállal csupán annyi a bajom, hogy Én az x/(3-x)= t×t változócserét láttam ésszerűnek, azzal kijön az adott eremény. Van valami egyszerűbb megoldás, ahol nem kell ennyit számolni? Előre is kösz, üdv: epsilon

[501] epsilon2008-05-02 09:07:35

Kedves Káli gúla! Az általánostott ötleted alapján úgy látom, hogy a feladatom esetén elegendő olyan a, b valós számokat találni, amelyekre 2x+a<=f(x)<=2x+b. Ennek érdekében tekintetem egy g(x)=f(x)-2x-k segédfüggvényt a (-1;0) intervallumon. Mivel itt, ennek a deriváltja nem pozitív, ezért itt a g(x) monoton csökkenő, vagyis g(0)<=g(x)<=g(-1) ahonnan a=-k é b=1+1/e -k megfelel (sőt pl. k=1 esetén még egyszerűbbek a korlátok). Ezzl a közrefogássak, az általad leírt lineáris függvény integrálása alapján a limesz láthatóbban 1/2 (persze nem olyan szép általánosan mint Te írtad). És az f'(0) pedig az e(expx) Taylor sorbafejtés (a 0 körül) második tagjára emlékeztet. Most csupán az a "gondom", hogy mivel ez a feladat középisklásoknak feleletválasztós teszt, hogyan lehet ép ésszel meggyőzni egy jobbacska diákot, hogy miért éppen a 2x+k típusú fogófüggvényt kerestem, vagyis miért van ott 2 és miért nem MÁS szám? Én erre csak az e(expx) Taylor sorbafejtésévől látom az f(x)-ben 2 megjelenését...valami más emészthetőbb tipp? Ismételten köszönöm a tartalmas, szinvonalas segítségedet, ami nélkül nem lett volna ez a happy End. Üdv: epsilon

[500] epsilon2008-05-02 08:33:38

Kedves Káli gúla! Köszi, hogy foglalkozol a problémával, és általánosítottabb formában elsőfokú föggvénnyel próbáltad asszimptótikusan megközelíteni az integrandusz alatti függvényt. Megpróbáltam emésztgetni a leírtakat, de amikor az utolsó integrálhoz értem, vagyis amit lennebb beteszek, ahoz, hogy ott a limesz 1/2 legyen szükséges a k1=k2=2...és akkor az azelőtt levő x+e(expx) közrefogása egy egyenlőségé alakúlnak, ami nem igaz. Ha tévedek,vagy rosszul értettem valamit, légyszíves javíts ki, mert a feladat megoldása ami érdekel, nem az, hogy keressem a kákán a csomót...de úgy látom, hogy..ahol jeleztem, elakadtam. Előre is kösz, üdv: epsilon

Előzmény: [499] Káli gúla, 2008-05-01 23:13:41
[499] Káli gúla2008-05-01 23:13:41

A 731. megoldása. A határérték szempontjából mindegy, hogy a \lim \int_{-1}^0 n f^n(x) dx-ben honnan integrálunk 0-ig, hiszen x<-\epsilon esetén |f(x)|<h<1, és így a (-1,-\epsilon) részen az integrandust nhn\to0-val lehet felülről becsülni. Lineáris függvényekre könnyen kiszámolhatjuk az integrált -\epsilon és 0 között:


\int_{-\epsilon}^0 n(kx+1)^n dx =
\frac{n}{n+1} \int_{-\epsilon}^0 (n+1)(kx+1)^n dx =
\frac{n}{n+1} \Big[ \frac1k(kx+1)^{n+1}\Big]_{-\epsilon}^0 =
\frac{n}{n+1} \frac1k(1-q^{n+1}) \to \frac{1}{k} ~~~~~~ (n\to\infty)~.

Ha k1<f '(0)<k2, akkor alkalmas \epsilon mellett a (-\epsilon,0) intervallumon k2x+1\lef(x)\lek1x+1, ezért  \frac{1}{k_2}\le 
\lim_{n\to\infty} \int_{-\epsilon}^0 n f^n (x) dx \le
\frac{1}{k_1}. Tehát a kérdésben szereplő határérték \frac{1}{f~'(0)}, azaz f(x)=x+ex esetén \frac{1}{1+e^0}=\frac{1}{2}.

Előzmény: [486] epsilon, 2008-04-27 10:37:40
[498] epsilon2008-04-30 08:24:11

Nagyszerű nadorp! Ez volt az egyetlen transzformáció ami változatlanul hagyta a nevezőt és a számlálóval is volt mit kezdeni. Természetesen a mezei integrál 4/4-el szorozva, azonnal kijön. Köszi szépen, ez sem volt piskóta, még maradt a 731. amire kiváncsi vagyok, megint egyedi-e a megoldása. A felygyült integráltesókat szerencsére ritkítottam, de ezek keményebb diók voltak Üdv: epsilon

Előzmény: [497] nadorp, 2008-04-29 21:06:23

  [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]    [11]    [12]    [13]    [14]    [15]    [16]    [17]    [18]    [19]    [20]    [21]    [22]    [23]    [24]    [25]    [26]    [27]    [28]    [29]    [30]    [31]    [32]    [33]    [34]    [35]    [36]    [37]    [38]    [39]    [40]    [41]    [42]    [43]    [44]    [45]    [46]