KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Cikklista
Trükkös

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

Kifordítható tetraéder

Ha a szabályos tetraédert sík felületen görgetjük, a csúcsai és a lapjai háromszögrácsot járnak be. (Ez azon múlik, hogy a tetraéder csúcsainál a szögek összege éppen 180o.) A rácsban sok helyen felfedezhetjük a kiterített tetraédert; például bármelyik sávban, amit párhuzamos rácsegyenesek határolnak, a sáv kétszeres periódusa kiadja a test teljes felszínét.

Ha a kétszeres periódus határát rárajzoljuk a tetraéder felszínére, egy zárt, állandó szélességű szalagot kapunk. Ha a szalag elég keskeny, akkor az élek mentén hajtogatva ki is fordíthatjuk, és a kifordított szalagot újra tetraéderfelszínné hajtogathatjuk össze. (Célszerű lehet a szalag szélén füleket is kialakítani.)

Elszánt, a Bolyai-geometriában jártas Olvasóink megpróbálkozhatnak a kifordítható focilabda megtervezésével és elkészítésével is.

Kós Géza

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley