KöMaL - Középiskolai Matematikai és Fizikai Lapok
Belépés
Regisztráció
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Versenykiírás
Tudnivalók
Nevezési lap
Feladatok
Eredmények
Korábbi évek
Arcképcsarnok
Munkafüzet

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

A B. 4868. feladat (2017. április)

B. 4868. Az \(\displaystyle ABC\) háromszögben \(\displaystyle AC<AB\), és az \(\displaystyle AF\) súlyvonal az \(\displaystyle A\)-nál lévő szöget \(\displaystyle 1:2\) arányban osztja. A \(\displaystyle B\)-ben \(\displaystyle AB\)-re állított merőleges az \(\displaystyle AF\) egyenest \(\displaystyle D\)-ben metszi. Mutassuk meg, hogy \(\displaystyle AD=2AC\).

(3 pont)

A beküldési határidő 2017. május 10-én LEJÁRT.


Megoldásvázlat. Legyen \(\displaystyle A\) tükörképe \(\displaystyle F\)-re \(\displaystyle A'\), \(\displaystyle AD\) felezéspontja \(\displaystyle T\), \(\displaystyle FAB\angle=\mu\), s így \(\displaystyle FAC\angle=2\mu\). Mivel \(\displaystyle T\) a \(\displaystyle BDA\) derékszögű háromszög Thalész-körének középpontja, így \(\displaystyle BAT\triangle\) egyenlőszárú, \(\displaystyle TBA\angle=\mu\), amiért \(\displaystyle BTA'\angle=2\mu\). A tükrözés miatt \(\displaystyle BA'T\angle=2\mu\), ezért \(\displaystyle BA'T\triangle\) egyenlőszárú, \(\displaystyle A'B=BT\). Ismét a tükrözés, illetve a Thalész-tétel miatt \(\displaystyle AC=A'B=BT=AD/2\).


Statisztika:

54 dolgozat érkezett.
3 pontot kapott:Beke Csongor, Besenyi Tibor, Csiszár Zoltán, Csuha Boglárka, Deák Bence, Döbröntei Dávid Bence, Dömsödi Bálint, Fekete Balázs Attila, Fülöp Anna Tácia, Füredi Erik Benjámin, Garamvölgyi István Attila, Geretovszky Anna, Győrffy Ágoston, Horváth Péter, Jánosik Áron, Kerekes Anna, Kiss Roberta Zsófia, Kocsis Júlia, Kőrösi Ákos, Lajkó Áron, Lakatos Ádám, Lukács Lilla Réka, Márton Dénes, Mikulás Zsófia, Noszály Áron, Olosz Adél, Páli Petra, Paulovics Péter, Póta Balázs, Richlik Róbert, Saár Patrik, Sáfi Lilla, Scheidler Barnabás, Simon Dániel Gábor, Szabó 417 Dávid, Szécsényi Nándor, Szemerédi Levente, Szepesi Zoltán, Tanács Viktória, Tiderenczl Dániel, Tóth 111 Máté , Tran 444 Ádám, Vári-Kakas Andor, Várkonyi Dorka, Varsányi András, Williams Hajna, Zólomy Kristóf, Zsigri Bálint.
2 pontot kapott:Török Ádám.
1 pontot kapott:2 versenyző.
0 pontot kapott:2 versenyző.
Nem versenyszerű:1 dolgozat.

Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley