Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A régi honlapot akarom!!! :-)

A K. 478. feladat (2015. november)

K. 478. Tamás gazda a boltban szeretne venni 4 méternyi láncot, melynek métere 210 Ft-ba kerül. Az eladó megpróbálja rábeszélni, hogy inkább vigye el mind a 10 métert, ami még ebből a láncból maradt. Tamás gazda továbbra is ragaszkodik a 4 méterhez, azonban észreveszi, hogy a boltos szándékosan rosszul mérte a levágandó darabot, ezért az 4 méternél rövidebb lett. Így azt kéri a boltostól, hogy mégis inkább a másik darabot adja el neki, aki, hogy a csalása ki ne derüljön, kénytelen 6 méter áráért eladni a másik darabot Tamás gazdának. Ha nem vette volna észre a csalást, akkor Tamás gazdának 14/9-szer annyiba került volna egy méter lánc, mint amennyibe ezzel a kis ravaszsággal került. Hány méter láncot kapott Tamás gazda?

(6 pont)

A beküldési határidő 2015. december 10-én LEJÁRT.


Megoldás. Legyen az először levágott láncdarab hossza \(\displaystyle x\) méter. Tamás gazda ezt 840 Ft-ért kapta volna meg, tehát 1 méter \(\displaystyle \frac{840}{x}\) Ft-ba került volna. Helyette inkább a \(\displaystyle 10–x\) méter hosszú darabot vitte el 1260 Ft-ért, tehát így egy méterért \(\displaystyle \frac{1260}{10-x}\) Ft-ot fizetett. A feladat állítása szerint a két ár hányadosa \(\displaystyle \frac{14}{9}\), tehát \(\displaystyle \frac{14}{9}=\frac{\frac{840}{x}}{\frac{1260}{10-x}}\). Rendezve az egyenletet \(\displaystyle \frac{14}{9}=\frac{840(10-x)}{1260x}=\frac{2(10-x)}{3x}\), innen kapjuk, hogy \(\displaystyle 7x=3(10-x)\), rendezve és megoldva \(\displaystyle x = 3\). Tehát Tamás gazda 7 méter láncot kapott.


Statisztika:

105 dolgozat érkezett.
6 pontot kapott:61 versenyző.
5 pontot kapott:7 versenyző.
4 pontot kapott:3 versenyző.
3 pontot kapott:2 versenyző.
0 pontot kapott:30 versenyző.
Nem versenyszerű:2 dolgozat.

A KöMaL 2015. novemberi matematika feladatai