Problem K. 836. (December 2024)
K. 836. For right triangle \(\displaystyle ABC\) point \(\displaystyle D\) is chosen on the extension of the unit length leg \(\displaystyle AB\) beyond \(\displaystyle B\) with the property \(\displaystyle BD = AC/2\). Let \(\displaystyle E\) denote the midpoint of leg \(\displaystyle AC\). The ratio of the areas of triangles \(\displaystyle AED\) and \(\displaystyle ABC\) is \(\displaystyle 2:3\). Determine the length of line segment \(\displaystyle BD\).
(5 pont)
Deadline expired on January 10, 2025.
Sorry, the solution is available only in Hungarian. Google translation
Megoldás. Tekintsük az ábrát. Jelölje \(\displaystyle BD\) hosszát \(\displaystyle x\).

A két háromszög területének aránya:
\(\displaystyle \frac{T_{EAD}}{T_{ABC}}=\frac{0,5\cdot(1+x)\cdot x}{0,5\cdot1\cdot2x}=\frac{1+x}{2}=\frac23\), innen \(\displaystyle x=\frac13\). Tehát a \(\displaystyle BD\) szakasz hossza \(\displaystyle \frac13\) egységnyi.
Statistics:
Problems in Mathematics of KöMaL, December 2024